Biomolecule-grafted GO enhanced the mechanical and biological properties of 3D printed PLA scaffolds with TPMS porous structure

被引:8
|
作者
Ye, Xiaotong [1 ]
Wang, Enyu [2 ,3 ]
Huang, Yanjian [1 ]
Zhang, Tianwen [4 ]
You, Hui [2 ,3 ]
Long, Yu [2 ,3 ]
Guo, Wang [2 ,3 ]
Liu, Bin [4 ]
Wang, Shan [1 ]
机构
[1] Guangxi Med Univ, Canc Hosp, Dept Res, Nanning 530021, Peoples R China
[2] Guangxi Univ, State Key Lab Featured Me Mat & Life Cycle Safety, Nanning 530004, Peoples R China
[3] Guangxi Univ, Sch Mech Engn, Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Nanning 530004, Peoples R China
[4] Guangxi Med Univ, Canc Hosp, Dept Orthoped Soft Tissue Surg, Nanning 530021, Peoples R China
关键词
Bone scaffold; Graphene oxide; L; -lysine; Triply periodic minimal surface (TPMS); Mechanical properties; Biological properties; ACID;
D O I
10.1016/j.jmbbm.2024.106646
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Graphene oxide (GO) exhibits excellent mechanical strength and modulus. However, its effectiveness in mechanically reinforcing polymer materials is limited due to issues with interfacial bonding and dispersion arising from differences in the physicochemical properties between GO and polymers. Surface modification using coupling agents is an effective method to improve the bonding problem between polymer and GO, but there may be biocompatibility issues when used in the biomedical field. In this study, the biomolecule L-lysine, was applied to improve the interfacial bonding and dispersion of GO in polylactic acid (PLA) without compromising biocompatibility. The PLA/L-lysine-modified GO (PLA/L-GO) bone scaffold with triply periodic minimal surface (TPMS) structure was prepared using fused deposition modeling (FDM). The FTIR results revealed successful grafting of L-lysine onto GO through the reaction between their -COOH and -NH2 groups. The macroscopic and microscopic morphology characterization indicated that the PLA/L-GO scaffolds exhibited an characteristics of dynamic diameter changes, with good interlayer bonding. It was noteworthy that the L-lysine modification promoted the dispersion of GO and the interfacial bonding with the PLA matrix, as characterized by SEM. As a result, the PLA/0.1L-GO scaffold exhibited higher compressive strength (13.2 MPa) and elastic modulus (226.8 MPa) than PLA/0.1GO. Moreover, PLA/L-GO composite scaffold exhibited superior biomineralization capacity and cell response compared to PLA/GO. In summary, L-lysine not only improved the dispersion and interfacial bonding of GO with PLA, enhancing the mechanical properties, but also improved the biological properties. This study suggests that biomolecules like L-lysine may replace traditional modifiers as an innovative bio-modifier to improve the performance of polymer/inorganic composite biomaterials.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Experimental evaluation of the mechanical and thermal properties of 3D printed PLA and its composites
    Vinyas, M.
    Athul, S. J.
    Harursampath, D.
    Thoi, T. Nguyen
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [42] Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants
    Wang, Ling
    Kang, Jianfeng
    Sun, Changning
    Li, Dichen
    Cao, Yi
    Jin, Zhongmin
    MATERIALS & DESIGN, 2017, 133 : 62 - 68
  • [43] 3D printing of PLA:CaP:GO scaffolds for bone tissue applications
    Gonzalez-Rodriguez, L.
    Perez-Davila, S.
    Lama, R.
    Lopez-Alvarez, M.
    Serra, J.
    Novoa, B.
    Figueras, A.
    Gonzalez, P.
    RSC ADVANCES, 2023, 13 (23) : 15947 - 15959
  • [44] Development and Characterization of PLA/PCL Blend Filaments and 3D Printed Scaffolds
    Eryildiz, Meltem
    Karakus, Aleyna
    Eksi, Mihrigul Altan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [45] Chemical modification of PLA for the design of 3D printed nanocomposite scaffolds with enhanced degradability for bone tissue engineering
    Dal Poggetto, Giovanni
    D'Amora, Ugo
    Ronca, Alfredo
    Raucci, Maria Grazia
    Soriente, Alessandra
    d'Ayala, Giovanna Gomez
    Laurienzo, Paola
    POLYMER COMPOSITES, 2025,
  • [46] Effects of accelerated weathering on properties of 3D-printed PLA scaffolds
    Alfaro, Maria Ester Cueto
    Stares, Steferson Luiz
    Barra, Guilherme Mariz de Oliveira
    Hotza, Dachamir
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [47] Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement
    Baptista, R.
    Guedes, M.
    Materials Science and Engineering C, 2021, 118
  • [48] Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement
    Baptista, R.
    Guedes, M.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118
  • [49] Chirality manipulation of 3D printed gyroidal scaffolds towards mechanical properties enhancement
    Zhang, Yanhong
    Zhang, Junming
    Yang, Weidong
    Che, Shunai
    Cao, Yuanyuan
    Han, Lu
    ADDITIVE MANUFACTURING, 2024, 96
  • [50] Mechanical deviation in 3D-Printed PLA bone scaffolds during biodegradation
    Senaysoy, Safa
    Ilhan, Recep
    Lekesiz, Huseyin
    Computers in Biology and Medicine, 2024, 183