3D printing of PLA:CaP:GO scaffolds for bone tissue applications

被引:10
|
作者
Gonzalez-Rodriguez, L. [1 ,2 ]
Perez-Davila, S. [1 ,2 ]
Lama, R. [3 ]
Lopez-Alvarez, M. [1 ,2 ]
Serra, J. [1 ,2 ]
Novoa, B. [3 ]
Figueras, A. [3 ]
Gonzalez, P. [1 ,2 ]
机构
[1] Univ Vigo, CINTECX, Grp Novos Mat, Vigo 36310, Spain
[2] UVIGO, Galicia Hlth Res Inst IIS Galicia Sur, SERGAS, Vigo 36213, Spain
[3] CSIC, Inst Marine Reseach IIM, Eduardo Cabello 6, Vigo 36208, Spain
关键词
FUNCTIONAL GRAPHENE OXIDE; IN-VITRO; CELLS; CYTOTOXICITY; COMPOSITE; OXIDATION; BIOCOMPATIBILITY; DIFFERENTIATION; HYDROXYAPATITE; MECHANISMS;
D O I
10.1039/d3ra00981e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C-OH, C-O-C) in a dose <= 0.25 mg mL(-1) promoted MG63 cells viability percentages above 70%, and in a dose <= 0.10 mg mL(-1) resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL(-1)) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.
引用
收藏
页码:15947 / 15959
页数:13
相关论文
共 50 条
  • [1] 3D PRINTING OF DOUBLE-POROUS PLA SCAFFOLDS FOR BONE TISSUE ENGINEERING
    Vandoni, Davide
    Pellegatta, Davide
    Negrini, Nicola Contessi
    Fare, Silvia
    TISSUE ENGINEERING PART A, 2022, 28 : S197 - S198
  • [2] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [3] 3D Printing of Scaffolds for Tissue Regeneration Applications
    Do, Anh-Vu
    Khorsand, Behnoush
    Geary, Sean M.
    Salem, Aliasger K.
    ADVANCED HEALTHCARE MATERIALS, 2015, 4 (12) : 1742 - 1762
  • [4] 3D printing of ceramic scaffolds for engineering of bone tissue
    Barinov S.M.
    Vakhrushev I.V.
    Komlev V.S.
    Mironov A.V.
    Popov V.K.
    Teterina A.Y.
    Fedotov A.Y.
    Yarygin K.N.
    Inorganic Materials: Applied Research, 2015, 6 (04) : 316 - 322
  • [5] 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications
    Cox, Sophie C.
    Thornby, John A.
    Gibbons, Gregory J.
    Williams, Mark A.
    Mallick, Kajal K.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 47 : 237 - 247
  • [6] 3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications
    Parupelli, Santosh Kumar
    Saudi, Sheikh
    Bhattarai, Narayan
    Desai, Salil
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 539 - 551
  • [7] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Barbara Leukers
    Hülya Gülkan
    Stephan H. Irsen
    Stefan Milz
    Carsten Tille
    Matthias Schieker
    Hermann Seitz
    Journal of Materials Science: Materials in Medicine, 2005, 16 : 1121 - 1124
  • [8] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Leukers, B
    Gülkan, H
    Irsen, SH
    Milz, S
    Tille, C
    Schieker, M
    Seitz, H
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (12) : 1121 - 1124
  • [9] Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications
    Pascual-Gonzalez, Cristina
    Thompson, Cillian
    de la Vega, Jimena
    Biurrun Churruca, Nicolas
    Fernandez-Blazquez, Juan P.
    Lizarralde, Iker
    Herraez-Molinero, Diego
    Gonzalez, Carlos
    LLorca, Javier
    RAPID PROTOTYPING JOURNAL, 2022, 28 (05) : 884 - 894
  • [10] Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering
    Hassanajili, Shadi
    Karami-Pour, Ali
    Oryan, Ahmad
    Talaei-Khozani, Tahereh
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 104