Biomolecule-grafted GO enhanced the mechanical and biological properties of 3D printed PLA scaffolds with TPMS porous structure

被引:8
|
作者
Ye, Xiaotong [1 ]
Wang, Enyu [2 ,3 ]
Huang, Yanjian [1 ]
Zhang, Tianwen [4 ]
You, Hui [2 ,3 ]
Long, Yu [2 ,3 ]
Guo, Wang [2 ,3 ]
Liu, Bin [4 ]
Wang, Shan [1 ]
机构
[1] Guangxi Med Univ, Canc Hosp, Dept Res, Nanning 530021, Peoples R China
[2] Guangxi Univ, State Key Lab Featured Me Mat & Life Cycle Safety, Nanning 530004, Peoples R China
[3] Guangxi Univ, Sch Mech Engn, Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Nanning 530004, Peoples R China
[4] Guangxi Med Univ, Canc Hosp, Dept Orthoped Soft Tissue Surg, Nanning 530021, Peoples R China
关键词
Bone scaffold; Graphene oxide; L; -lysine; Triply periodic minimal surface (TPMS); Mechanical properties; Biological properties; ACID;
D O I
10.1016/j.jmbbm.2024.106646
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Graphene oxide (GO) exhibits excellent mechanical strength and modulus. However, its effectiveness in mechanically reinforcing polymer materials is limited due to issues with interfacial bonding and dispersion arising from differences in the physicochemical properties between GO and polymers. Surface modification using coupling agents is an effective method to improve the bonding problem between polymer and GO, but there may be biocompatibility issues when used in the biomedical field. In this study, the biomolecule L-lysine, was applied to improve the interfacial bonding and dispersion of GO in polylactic acid (PLA) without compromising biocompatibility. The PLA/L-lysine-modified GO (PLA/L-GO) bone scaffold with triply periodic minimal surface (TPMS) structure was prepared using fused deposition modeling (FDM). The FTIR results revealed successful grafting of L-lysine onto GO through the reaction between their -COOH and -NH2 groups. The macroscopic and microscopic morphology characterization indicated that the PLA/L-GO scaffolds exhibited an characteristics of dynamic diameter changes, with good interlayer bonding. It was noteworthy that the L-lysine modification promoted the dispersion of GO and the interfacial bonding with the PLA matrix, as characterized by SEM. As a result, the PLA/0.1L-GO scaffold exhibited higher compressive strength (13.2 MPa) and elastic modulus (226.8 MPa) than PLA/0.1GO. Moreover, PLA/L-GO composite scaffold exhibited superior biomineralization capacity and cell response compared to PLA/GO. In summary, L-lysine not only improved the dispersion and interfacial bonding of GO with PLA, enhancing the mechanical properties, but also improved the biological properties. This study suggests that biomolecules like L-lysine may replace traditional modifiers as an innovative bio-modifier to improve the performance of polymer/inorganic composite biomaterials.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Impact of graphene reinforcement on mechanical properties of PLA 3D printed materials
    Marconi, S.
    Alaimo, G.
    Mauri, V
    Torre, M.
    Auricchio, F.
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2017,
  • [22] Investigation of elasticity in the mechanical properties of 3D printed PLA bolt sample
    Alkhalaf, Faisal
    Almughier, Rashed
    Alolaiwy, Asim
    Albadrani, Mohammed
    ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2024, 10 (03) : 1856 - 1868
  • [23] Effect of Printing Parameters of 3D Printed PLA Parts on Mechanical Properties
    Jayakumar, N.
    Senthilkumar, G.
    Pradeep, A. D.
    JOURNAL OF ENGINEERING RESEARCH, 2021, 9
  • [24] Size Effects on the Mechanical Properties of 3D Printed Plaster and PLA Parts
    Wu, Chao
    Chen, Chen
    Cheeseman, Chris
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (07)
  • [25] Mechanical properties of porous ceramic scaffolds made by 3D printing
    Seitz, H
    Irsen, SH
    Leukers, B
    Rieder, W
    Tille, C
    VIRTUAL MODELING AND RAPID MANUFACTURING: ADVANCED RESEARCH IN VIRTUAL AND RAPID PROTOTYPING, 2005, : 109 - 113
  • [26] Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration
    Ma, Jiaqi
    Li, Yumeng
    Mi, Yujing
    Gong, Qiannan
    Zhang, Pengfei
    Meng, Bing
    Wang, Jue
    Wang, Jing
    Fan, Yawei
    JOURNAL OF TISSUE ENGINEERING, 2024, 15
  • [27] The effect of zinc oxide doping on mechanical and biological properties of 3D printed calcium sulfate based scaffolds
    Dikici, Betul Aldemir
    Dikici, Serkan
    Karaman, Ozan
    Oflaz, Hakan
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2017, 37 (04) : 733 - 741
  • [28] 3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds
    Pensa, Nicholas W.
    Curry, Andrew S.
    Bonvallet, Paul P.
    Bellis, Nathan F.
    Rettig, Kayla M.
    Reddy, Michael S.
    Eberhardt, Alan W.
    Bellis, Susan L.
    BIOMATERIALS RESEARCH, 2019, 23 (01)
  • [29] 3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds
    Nicholas W. Pensa
    Andrew S. Curry
    Paul P. Bonvallet
    Nathan F. Bellis
    Kayla M. Rettig
    Michael S. Reddy
    Alan W. Eberhardt
    Susan L. Bellis
    Biomaterials Research, 23
  • [30] Mechanical properties of 3D printed polycaprolactone honeycomb structure
    Zhang, Pengfei
    Arceneaux, Donald Joseph
    Khattab, Ahmed
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (12)