A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem

被引:0
|
作者
Cesmelioglu, Aycil [1 ]
Lee, Jeonghun J. [2 ]
Rhebergen, Sander [3 ]
Tabaku, Dorisa [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Baylor Univ, Dept Math, Waco, TX USA
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Hybridizable; Discontinuous Galerkin; Dual-porosity model; Stokes equations; Coupled problem; FINITE-ELEMENT-METHOD; COUPLING FLUID-FLOW;
D O I
10.1016/j.camwa.2024.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the dual -porosity -Stokes problem. This coupled problem describes the interaction between free flow in macrofractures/conduits, governed by the Stokes equations, and flow in microfractures/matrix, governed by a dual -porosity model. We prove that the HDG method is strongly conservative, well -posed, and give an a priori error analysis showing dependence on the problem parameters. Our theoretical findings are corroborated by numerical examples.
引用
下载
收藏
页码:180 / 195
页数:16
相关论文
共 50 条
  • [41] A hybridizable direct discontinuous Galerkin method for elliptic problems
    Yue, Huiqiang
    Cheng, Jian
    Liu, Tiegang
    Shaydurov, Vladimir
    BOUNDARY VALUE PROBLEMS, 2016,
  • [42] A staggered discontinuous Galerkin method for the Stokes problem on rectangular meshes
    Kim, Hyea Hyun
    Gie, Gung-Min
    Jung, Chang-Yeol
    Nguyen, Thien Binh
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 162 : 180 - 195
  • [43] A Multigrid Discretization of Discontinuous Galerkin Method for the Stokes Eigenvalue Problem
    Sun, Ling Ling
    Bi, Hai
    Yang, Yidu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (05) : 1391 - 1419
  • [44] A discontinuous Galerkin method for a coupled Stokes-Biot problem
    Zhou, Mingbo
    Li, Rui
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [45] A Hybridizable Discontinuous Galerkin Method for the Navier–Stokes Equations with Pointwise Divergence-Free Velocity Field
    Sander Rhebergen
    Garth N. Wells
    Journal of Scientific Computing, 2018, 76 : 1484 - 1501
  • [46] A multilevel Monte Carlo ensemble and hybridizable discontinuous Galerkin method for a stochastic parabolic problem
    Li, Meng
    Luo, Xianbing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2840 - 2864
  • [47] An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 1147 - 1170
  • [48] ANALYSIS OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE STEADY-STATE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Cesmelioglu, Aycil
    Cockburn, Bernardo
    Qiu, Weifeng
    MATHEMATICS OF COMPUTATION, 2017, 86 (306) : 1643 - 1670
  • [49] Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations
    Giorgiani, Giorgio
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    COMPUTERS & FLUIDS, 2014, 98 : 196 - 208
  • [50] Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations
    Ueckermann, M. P.
    Lermusiaux, P. F. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 306 : 390 - 421