A multilevel Monte Carlo ensemble and hybridizable discontinuous Galerkin method for a stochastic parabolic problem

被引:1
|
作者
Li, Meng [1 ]
Luo, Xianbing [1 ,2 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang, Peoples R China
[2] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
ensemble-based time stepping; stochastic parabolic; multilevel Monte Carlo; HDG; PARTIAL-DIFFERENTIAL-EQUATIONS; DIRICHLET BOUNDARY CONTROL; HDG METHOD; ERROR ANALYSIS; COLLOCATION METHOD; ALGORITHM;
D O I
10.1002/num.22990
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A second-order, multilevel Monte Carlo ensemble, and hybridizable discontinuous Galerkin (MLMCE-HDG) method is proposed to solve the stochastic parabolic partial differential equations (SPDEs). By introducing an ensemble average of the diffusion coefficient, the MLMCE-HDG method results in a single discrete system with multiple right-hand-vectors, which can be solved more efficiently than a group of linear systems. A rigorous error estimate is obtained with a second-order accuracy in time and optimal convergence rate in physical space. Comparing with the multilevel Monte Carlo and hybridizable discontinuous Galerkin (MLMC-HDG) method, the MLMCE-HDG method can reduce the computational cost. Finally, we provide several numerical experiments to illustrate the theoretical results.
引用
收藏
页码:2840 / 2864
页数:25
相关论文
共 50 条
  • [1] A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation
    Chen, Huangxin
    Lu, Peipei
    Xu, Xuejun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 264 : 133 - 151
  • [2] A Hybridizable Discontinuous Galerkin Method for the Quad-Curl Problem
    Gang Chen
    Jintao Cui
    Liwei Xu
    [J]. Journal of Scientific Computing, 2021, 87
  • [3] A Hybridizable Discontinuous Galerkin Method for the Quad-Curl Problem
    Chen, Gang
    Cui, Jintao
    Xu, Liwei
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
  • [4] Multilevel Monte Carlo method for parabolic stochastic partial differential equations
    Andrea Barth
    Annika Lang
    Christoph Schwab
    [J]. BIT Numerical Mathematics, 2013, 53 : 3 - 27
  • [5] Multilevel Monte Carlo method for parabolic stochastic partial differential equations
    Barth, Andrea
    Lang, Annika
    Schwab, Christoph
    [J]. BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 3 - 27
  • [6] A MULTIORDER DISCONTINUOUS GALERKIN MONTE CARLO METHOD FOR HYPERBOLIC PROBLEMS WITH STOCHASTIC PARAMETERS
    Motamed, Mohammad
    Appelo, Daniel
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 448 - 468
  • [7] A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem
    Cesmelioglu, Aycil
    Lee, Jeonghun J.
    Rhebergen, Sander
    Tabaku, Dorisa
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 165 : 180 - 195
  • [8] A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs
    Luo, Yan
    Wang, Zhu
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A622 - A642
  • [9] A hybridizable discontinuous Galerkin method for linear elasticity
    Soon, S. -C.
    Cockburn, B.
    Stolarski, Henryk K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (08) : 1058 - 1092
  • [10] A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates
    Jianguo Huang
    Xuehai Huang
    [J]. Journal of Scientific Computing, 2019, 78 : 290 - 320