Multilevel Monte Carlo method for parabolic stochastic partial differential equations

被引:38
|
作者
Barth, Andrea [1 ]
Lang, Annika [1 ]
Schwab, Christoph [1 ]
机构
[1] ETH, Seminar Angew Math, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Multilevel Monte Carlo; Stochastic partial differential equations; Stochastic Finite Element Methods; Stochastic parabolic equation; Multilevel approximations; CONVERGENCE; SCHEME;
D O I
10.1007/s10543-012-0401-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze the convergence and complexity of multilevel Monte Carlo discretizations of a class of abstract stochastic, parabolic equations driven by square integrable martingales. We show under low regularity assumptions on the solution that the judicious combination of low order Galerkin discretizations in space and an Euler-Maruyama discretization in time yields mean square convergence of order one in space and of order 1/2 in time to the expected value of the mild solution. The complexity of the multilevel estimator is shown to scale log-linearly with respect to the corresponding work to generate a single path of the solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on the finest mesh.
引用
收藏
页码:3 / 27
页数:25
相关论文
共 50 条
  • [1] Multilevel Monte Carlo method for parabolic stochastic partial differential equations
    Andrea Barth
    Annika Lang
    Christoph Schwab
    [J]. BIT Numerical Mathematics, 2013, 53 : 3 - 27
  • [2] Multilevel Monte Carlo method with applications to stochastic partial differential equations
    Barth, Andrea
    Lang, Annika
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (18) : 2479 - 2498
  • [3] Stabilized multilevel Monte Carlo method for stiff stochastic differential equations
    Abdulle, Assyr
    Blumenthal, Adrian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 445 - 460
  • [4] Improved stabilized multilevel monte carlo method for stiff stochastic differential equations
    ANMC, Section de Mathématiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    [J]. Lect. Notes Comput. Sci. Eng., (537-545):
  • [5] DIVERGENCE OF THE MULTILEVEL MONTE CARLO EULER METHOD FOR NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS
    Hutzenthaler, Martin
    Jentzen, Arnulf
    Kloeden, Peter E.
    [J]. ANNALS OF APPLIED PROBABILITY, 2013, 23 (05): : 1913 - 1966
  • [6] MULTILEVEL MONTE CARLO FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SMALL NOISE
    Anderson, David F.
    Higham, Desmond J.
    Sun, Yu
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 505 - 529
  • [7] Multilevel Monte Carlo for stochastic differential equations with additive fractional noise
    Peter E. Kloeden
    Andreas Neuenkirch
    Raffaella Pavani
    [J]. Annals of Operations Research, 2011, 189 : 255 - 276
  • [8] Multilevel Monte Carlo for stochastic differential equations with additive fractional noise
    Kloeden, Peter E.
    Neuenkirch, Andreas
    Pavani, Raffaella
    [J]. ANNALS OF OPERATIONS RESEARCH, 2011, 189 (01) : 255 - 276
  • [9] Multilevel Markov Chain Monte Carlo for Bayesian Inversion of Parabolic Partial Differential Equations under Gaussian Prior
    Viet Ha Hoang
    Quek, Jia Hao
    Schwab, Christoph
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 384 - 419
  • [10] On a Monte Carlo scheme for some linear stochastic partial differential equations
    Nakagawa, Takuya
    Tanaka, Akihiro
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2021, 27 (02): : 169 - 193