Multilevel Monte Carlo for stochastic differential equations with additive fractional noise

被引:23
|
作者
Kloeden, Peter E. [1 ]
Neuenkirch, Andreas [2 ]
Pavani, Raffaella [3 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
[3] Politecn Milan, Dipartimento Matemat, I-20155 Milan, Italy
关键词
SDEs with additive noise; Fractional Brownian motion; Multilevel Monte Carlo; Euler scheme; Malliavin calculus; DRIVEN; APPROXIMATION; CONVERGENCE; SIMULATION; SDES;
D O I
10.1007/s10479-009-0663-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We adopt the multilevel Monte Carlo method introduced by M. Giles (Multilevel Monte Carlo path simulation, Oper. Res. 56(3):607-617, 2008) to SDEs with additive fractional noise of Hurst parameter H > 1/2. For the approximation of a Lipschitz functional of the terminal state of the SDE we construct a multilevel estimator based on the Euler scheme. This estimator achieves a prescribed root mean square error of order epsilon with a computational effort of order epsilon (-2).
引用
收藏
页码:255 / 276
页数:22
相关论文
共 50 条