MACHINE LEARNING POTENTIALS FOR GRAPHENE

被引:0
|
作者
Singh, Akash [1 ]
Li, Yumeng [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
Artificial Neural Network (ANN); Density Functional Theory (DFT); Molecular Dynamics Simulation; 2D Materials; Symmetry Functions; Machine Learning Potentials;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Graphene has been one of the most researched material in the world for the past two decades due to its unique combination of mechanical, thermal and electrical properties. Graphene exists in a stable two dimensional (2D) structure with hexagonal carbon rings. This special 2D structure of graphene enables it to exhibit a wide range of peculiar material properties like high Young's modulus, high specific strength, and electrical conductivity etc. However, it is extremely challenging and costly to investigate graphene solely based on experimental tests. Atomistic simulations are powerful computational techniques for characterizing materials at small length and time scales with a fraction of cost relative to experimental testing. High fidelity atomistic simulations like Density Functional Theory (DFT) simulations, and ab initio molecular dynamic simulations have higher accuracy in predicting 2D material properties but are computationally expensive. Classic molecular dynamics (MD) simulations adopt empirical interatomic potentials which drastically reduce the computational time but has lower simulation accuracy. To bridge the gap between these two type of simulation techniques, a new artificial neural network potential is developed, for graphene in this study, to enable the characterization of 2D materials using classic MD simulations with a comparable accuracy of first principles simulation. This is expected to accelerate the discovery and design of novel graphene based functional materials. In the present study mechanical and thermal properties of graphene are investigated using the machine learning potentials by conducting MD simulations. To validate the accuracy of machine learning potentials mechanical properties such as Young's modulus, ultimate tensile strength and thermal properties such as coefficient of thermal expansion and lattice parameter are evaluated for graphene and compared with existing literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Perspective: Machine learning potentials for atomistic simulations
    Behler, Joerg
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17):
  • [12] Machine learning potentials for complex aqueous made
    Schran, Christoph
    Thiemann, Fabian L.
    Rowe, Patrick
    Muller, Erich A.
    Marsalek, Ondrej
    Michaelides, Angelos
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (38)
  • [13] Global machine learning potentials for molecular crystals
    Zugec, Ivan
    Geilhufe, R. Matthias
    Loncaric, Ivor
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (15):
  • [14] Machine learning potentials for extended systems: a perspective
    Behler, Joerg
    Csanyi, Gabor
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (07):
  • [15] Introduction to machine learning potentials for atomistic simulations
    Thiemann, Fabian L.
    O'Neill, Niamh
    Kapil, Venkat
    Michaelides, Angelos
    Schran, Christoph
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (07)
  • [16] Machine-learning potentials for crystal defects
    Rodrigo Freitas
    Yifan Cao
    MRS Communications, 2022, 12 : 510 - 520
  • [17] Applications and training sets of machine learning potentials
    Hong, Changho
    Kim, Jaehoon
    Kim, Jaesun
    Jung, Jisu
    Ju, Suyeon
    Choi, Jeong Min
    Han, Seungwu
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS-METHODS, 2023, 3 (01):
  • [18] Construction of Machine Learning Interatomic Potentials for Metals
    Dmitriev, S. V.
    Kistanov, A. A.
    Kosarev, I. V.
    Scherbinin, S. A.
    Shapeev, A. V.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (09) : 1408 - 1413
  • [19] Spatially Resolved Uncertainties for Machine Learning Potentials
    Heid, Esther
    Schoerghuber, Johannes
    Wanzenboeck, Ralf
    Madsen, Georg K. H.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (16) : 6377 - 6387
  • [20] Machine-learning potentials for crystal defects
    Freitas, Rodrigo
    Cao, Yifan
    MRS COMMUNICATIONS, 2022, 12 (05) : 510 - 520