Global machine learning potentials for molecular crystals

被引:0
|
作者
Zugec, Ivan [1 ]
Geilhufe, R. Matthias [2 ]
Loncaric, Ivor [3 ]
机构
[1] Univ Basque Country, Ctr Fis Mat CFM MPC, CSIC, San Sebastian, Spain
[2] Chalmers Univ Technol, Dept Phys, Gothenburg, Sweden
[3] Rudjer Boskovic Inst, Bijenicka 54, Zagreb, Croatia
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 15期
基金
瑞典研究理事会;
关键词
DATA-EFFICIENT; PATH; DFT;
D O I
10.1063/5.0196232
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular crystals are difficult to model with accurate first-principles methods due to large unit cells. On the other hand, accurate modeling is required as polymorphs often differ by only 1 kJ/mol. Machine learning interatomic potentials promise to provide accuracy of the baseline first-principles methods with a cost lower by orders of magnitude. Using the existing databases of the density functional theory calculations for molecular crystals and molecules, we train global machine learning interatomic potentials, usable for any molecular crystal. We test the performance of the potentials on experimental benchmarks and show that they perform better than classical force fields and, in some cases, are comparable to the density functional theory calculations.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Thermal conductivity of GeTe crystals based on machine learning potentials
    张健
    张昊春
    李伟峰
    张刚
    [J]. Chinese Physics B, 2024, 33 (04) : 587 - 590
  • [2] Thermal conductivity of GeTe crystals based on machine learning potentials
    Zhang, Jian
    Zhang, Hao-Chun
    Li, Weifeng
    Zhang, Gang
    [J]. CHINESE PHYSICS B, 2024, 33 (04)
  • [3] A review of machine learning potentials and their applications to molecular simulation
    Liu, Dongfei
    Zhang, Fan
    Liu, Zheng
    Lu, Diannan
    [J]. Huagong Xuebao/CIESC Journal, 2024, 75 (04): : 1241 - 1255
  • [4] Machine Learning Classification of Local Environments in Molecular Crystals
    Kuroshima, Daisuke
    Kilgour, Michael
    Tuckerman, Mark E.
    Rogal, Jutta
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (14) : 6197 - 6206
  • [5] OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
    Eastman, Peter
    Galvelis, Raimondas
    Pelaez, Raul P.
    Abreu, Charlles R. A.
    Farr, Stephen E.
    Gallicchio, Emilio
    Gorenko, Anton
    Henry, Michael M.
    Hu, Frank
    Huang, Jing
    Kramer, Andreas
    Michel, Julien
    Mitchell, Joshua A.
    Pande, Vijay S.
    Rodrigues, Joao P. G. L. M.
    Rodriguez-Guerra, Jaime
    Simmonett, Andrew C.
    Singh, Sukrit
    Swails, Jason
    Turner, Philip
    Wang, Yuanqing
    Zhang, Ivy
    Chodera, John D.
    De Fabritiis, Gianni
    Markland, Thomas E.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 128 (01): : 109 - 116
  • [6] Machine learning accelerates quantum mechanics predictions of molecular crystals
    Han, Yanqiang
    Ali, Imran
    Wang, Zhilong
    Cai, Junfei
    Wu, Sicheng
    Tang, Jiequn
    Zhang, Lin
    Ren, Jiahao
    Xiao, Rui
    Lu, Qianqian
    Hang, Lei
    Luo, Hongyuan
    Li, Jinjin
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 934 : 1 - 71
  • [7] NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics
    Galvelis, Raimondas
    Varela-Rial, Alejandro
    Doerr, Stefan
    Fino, Roberto
    Eastman, Peter
    Markland, Thomas E.
    Chodera, John D.
    De Fabritiis, Gianni
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (18) : 5701 - 5708
  • [8] Molecular quantum chemical data sets and databases for machine learning potentials
    Ullah, Arif
    Chen, Yuxinxin
    Dral, Pavlo O
    [J]. Machine Learning: Science and Technology, 2024, 5 (04):
  • [9] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Nikita Fedik
    Roman Zubatyuk
    Maksim Kulichenko
    Nicholas Lubbers
    Justin S. Smith
    Benjamin Nebgen
    Richard Messerly
    Ying Wai Li
    Alexander I. Boldyrev
    Kipton Barros
    Olexandr Isayev
    Sergei Tretiak
    [J]. Nature Reviews Chemistry, 2022, 6 : 653 - 672
  • [10] Machine learning of correlated dihedral potentials for atomistic molecular force fields
    Pascal Friederich
    Manuel Konrad
    Timo Strunk
    Wolfgang Wenzel
    [J]. Scientific Reports, 8