Machine-learning potentials for crystal defects

被引:21
|
作者
Freitas, Rodrigo [1 ]
Cao, Yifan [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
INTERATOMIC POTENTIALS; DISLOCATIONS; TRANSITION; SURFACES; GLIDE;
D O I
10.1557/s43579-022-00221-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Decades of advancements in strategies for the calculation of atomic interactions have culminated in a class of methods known as machine-learning interatomic potentials (MLIAPs). MLIAPs dramatically widen the spectrum of materials systems that can be simulated with high physical fidelity, including their microstructural evolution and kinetics. This framework, in conjunction with cross-scale simulations and in silico microscopy, is poised to bring a paradigm shift to the field of atomistic simulations of materials. In this prospective article we summarize recent progress in the application of MLIAPs to crystal defects.
引用
收藏
页码:510 / 520
页数:11
相关论文
共 50 条
  • [1] Machine-learning potentials for crystal defects
    Rodrigo Freitas
    Yifan Cao
    [J]. MRS Communications, 2022, 12 : 510 - 520
  • [2] Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
    Podryabinkin, Evgeny, V
    Tikhonov, Evgeny, V
    Shapeev, Alexander, V
    Oganov, Artem R.
    [J]. PHYSICAL REVIEW B, 2019, 99 (06)
  • [3] Training machine-learning potentials for crystal structure prediction using disordered structures
    Hong, Changho
    Choi, Jeong Min
    Jeong, Wonseok
    Kang, Sungwoo
    Ju, Suyeon
    Lee, Kyeongpung
    Jung, Jisu
    Youn, Yong
    Han, Seungwu
    [J]. PHYSICAL REVIEW B, 2020, 102 (22)
  • [5] Heat flux for semilocal machine-learning potentials
    Langer, Marcel F.
    Knoop, Florian
    Carbogno, Christian
    Scheffler, Matthias
    Rupp, Matthias
    [J]. Physical Review B, 2023, 108 (10)
  • [6] Ultra-fast interpretable machine-learning potentials
    Stephen R. Xie
    Matthias Rupp
    Richard G. Hennig
    [J]. npj Computational Materials, 9
  • [7] Improve the performance of machine-learning potentials by optimizing descriptors
    Gao, Hao
    Wang, Junjie
    Sun, Jian
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (24):
  • [8] Ultra-fast interpretable machine-learning potentials
    Xie, Stephen R.
    Rupp, Matthias
    Hennig, Richard G.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [9] Efficient and transferable machine learning potentials for the simulation of crystal defects in bcc Fe and W
    Goryaeva, Alexandra M.
    Deres, Julien
    Lapointe, Clovis
    Grigorev, Petr
    Swinburne, Thomas D.
    Kermode, James R.
    Ventelon, Lisa
    Baima, Jacopo
    Marinica, Mihai-Cosmin
    [J]. PHYSICAL REVIEW MATERIALS, 2021, 5 (10):
  • [10] Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron
    Byggmastar, J.
    Nikoulis, G.
    Fellman, A.
    Granberg, F.
    Djurabekova, F.
    Nordlund, K.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (30)