Ultra-fast interpretable machine-learning potentials

被引:14
|
作者
Xie, Stephen R. [1 ,2 ]
Rupp, Matthias [3 ,4 ]
Hennig, Richard G. [1 ,2 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA
[3] Univ Konstanz, Dept Comp & Informat Sci, Constance, Germany
[4] Luxembourg Inst Sci & Technol LIST, Mat Res & Technol Dept, Esch Sur Alzette, Luxembourg
基金
美国国家科学基金会; 美国能源部;
关键词
MANY-BODY POTENTIALS; MATERIALS SCIENCE; GENERATION; FIELDS;
D O I
10.1038/s41524-023-01092-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-atom dynamics simulations are an indispensable quantitative tool in physics, chemistry, and materials science, but large systems and long simulation times remain challenging due to the trade-off between computational efficiency and predictive accuracy. To address this challenge, we combine effective two- and three-body potentials in a cubic B-spline basis with regularized linear regression to obtain machine-learning potentials that are physically interpretable, sufficiently accurate for applications, as fast as the fastest traditional empirical potentials, and two to four orders of magnitude faster than state-of-the-art machine-learning potentials. For data from empirical potentials, we demonstrate the exact retrieval of the potential. For data from density functional theory, the predicted energies, forces, and derived properties, including phonon spectra, elastic constants, and melting points, closely match those of the reference method. The introduced potentials might contribute towards accurate all-atom dynamics simulations of large atomistic systems over long-time scales.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ultra-fast interpretable machine-learning potentials
    Stephen R. Xie
    Matthias Rupp
    Richard G. Hennig
    [J]. npj Computational Materials, 9
  • [2] Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
    Dolgirev, Pavel E.
    Kruglov, Ivan A.
    Oganov, Artem R.
    [J]. AIP ADVANCES, 2016, 6 (08):
  • [3] Machine-learning potentials for crystal defects
    Rodrigo Freitas
    Yifan Cao
    [J]. MRS Communications, 2022, 12 : 510 - 520
  • [4] Machine-learning potentials for crystal defects
    Freitas, Rodrigo
    Cao, Yifan
    [J]. MRS COMMUNICATIONS, 2022, 12 (05) : 510 - 520
  • [5] Fast machine-learning online optimization of ultra-cold-atom experiments
    Wigley, P. B.
    Everitt, P. J.
    van den Hengel, A.
    Bastian, J. W.
    Sooriyabandara, M. A.
    McDonald, G. D.
    Hardman, K. S.
    Quinlivan, C. D.
    Manju, P.
    Kuhn, C. C. N.
    Petersen, I. R.
    Luiten, A. N.
    Hope, J. J.
    Robins, N. P.
    Hush, M. R.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [6] Fast machine-learning online optimization of ultra-cold-atom experiments
    P. B. Wigley
    P. J. Everitt
    A. van den Hengel
    J. W. Bastian
    M. A. Sooriyabandara
    G. D. McDonald
    K. S. Hardman
    C. D. Quinlivan
    P. Manju
    C. C. N. Kuhn
    I. R. Petersen
    A. N. Luiten
    J. J. Hope
    N. P. Robins
    M. R. Hush
    [J]. Scientific Reports, 6
  • [8] Heat flux for semilocal machine-learning potentials
    Langer, Marcel F.
    Knoop, Florian
    Carbogno, Christian
    Scheffler, Matthias
    Rupp, Matthias
    [J]. Physical Review B, 2023, 108 (10)
  • [9] Interpretable machine-learning predictions of perceptual sensitivity for retinal prostheses
    Beyeler, Michael
    Boynton, Geoffrey M.
    Fine, Ione
    Rokem, Ariel
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [10] Ultra-fast Machine Learning Classifier Execution on IoT Devices without SRAM Consumption
    Sudharsan, Bharath
    Patel, Pankesh
    Breslin, John G.
    Ali, Muhammad Intizar
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2021, : 316 - 319