Interpretable machine-learning predictions of perceptual sensitivity for retinal prostheses

被引:0
|
作者
Beyeler, Michael [1 ,2 ]
Boynton, Geoffrey M. [2 ]
Fine, Ione [2 ]
Rokem, Ariel [3 ]
机构
[1] Univ Calif Santa Barbara, Psychol & Brain Sci, Santa Barbara, CA 93106 USA
[2] Univ Washington, Psychol, Seattle, WA USA
[3] Univ Washington, eSci Inst, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
2202
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Explainable machine learning predictions of perceptual sensitivity for retinal prostheses
    Pogoncheff, Galen
    Hu, Zuying
    Rokem, Ariel
    Beyeler, Michael
    [J]. JOURNAL OF NEURAL ENGINEERING, 2024, 21 (02)
  • [2] Interpretable machine-learning models for maximum displacements of RC beams under impact loading predictions
    Lai, Dade
    Demartino, Cristoforo
    Xiao, Yan
    [J]. ENGINEERING STRUCTURES, 2023, 281
  • [3] Evaluating interpretable machine learning predictions for cryptocurrencies
    El Majzoub, Ahmad
    Rabhi, Fethi A.
    Hussain, Walayat
    [J]. INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT, 2023, 30 (03): : 137 - 149
  • [4] An interpretable ensemble machine-learning workflow for permeability predictions in tight sandstone reservoirs using logging data
    Feng, Ping
    Wang, Ruijia
    Sun, Jianmeng
    Yan, Weichao
    Chi, Peng
    Luo, Xin
    [J]. Geophysics, 2024, 89 (05)
  • [5] Ultra-fast interpretable machine-learning potentials
    Stephen R. Xie
    Matthias Rupp
    Richard G. Hennig
    [J]. npj Computational Materials, 9
  • [6] Ultra-fast interpretable machine-learning potentials
    Xie, Stephen R.
    Rupp, Matthias
    Hennig, Richard G.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [7] Machine-learning predictions of the shale wells' performance
    Mehana, Mohamed
    Guiltinan, Eric
    Vesselinov, Velimir
    Middleton, Richard
    Hyman, Jeffrey D.
    Kang, Qinjun
    Viswanathan, Hari
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 88
  • [8] Quantum layer boosts machine-learning predictions
    Lemonick, Sam
    [J]. CHEMICAL & ENGINEERING NEWS, 2019, 9 (14) : 8 - 8
  • [9] Machine-learning predictions of positron binding to molecules
    Amaral, Paulo H. R.
    Mohallem, Jose R.
    [J]. PHYSICAL REVIEW A, 2020, 102 (05)
  • [10] An interpretable machine-learning framework for dark matter halo formation
    Lucie-Smith, Luisa
    Peiris, Hiranya, V
    Pontzen, Andrew
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (01) : 331 - 342