Machine-learning potentials for crystal defects

被引:21
|
作者
Freitas, Rodrigo [1 ]
Cao, Yifan [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
INTERATOMIC POTENTIALS; DISLOCATIONS; TRANSITION; SURFACES; GLIDE;
D O I
10.1557/s43579-022-00221-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Decades of advancements in strategies for the calculation of atomic interactions have culminated in a class of methods known as machine-learning interatomic potentials (MLIAPs). MLIAPs dramatically widen the spectrum of materials systems that can be simulated with high physical fidelity, including their microstructural evolution and kinetics. This framework, in conjunction with cross-scale simulations and in silico microscopy, is poised to bring a paradigm shift to the field of atomistic simulations of materials. In this prospective article we summarize recent progress in the application of MLIAPs to crystal defects.
引用
收藏
页码:510 / 520
页数:11
相关论文
共 50 条
  • [31] Rapid profile reconstruction of phase defects via machine-learning regression model
    Ma, He
    Tan, Fangrui
    Wu, Xiaobin
    Han, Xiaoquan
    [J]. INTERNATIONAL CONFERENCE ON EXTREME ULTRAVIOLET LITHOGRAPHY 2022, 2022, 12292
  • [32] Machine-learning correction to density-functional crystal structure optimization
    Hussein, Robert
    Schmidt, Jonathan
    Barros, Tomas
    Marques, Miguel A. L.
    Botti, Silvana
    [J]. MRS BULLETIN, 2022, 47 (08) : 765 - 771
  • [33] Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
    Cubuk, E. D.
    Schoenholz, S. S.
    Rieser, J. M.
    Malone, B. D.
    Rottler, J.
    Durian, D. J.
    Kaxiras, E.
    Liu, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [34] Machine-Learning Based Interatomic Potential for Studying the Properties of Crystal Structures
    Uvarova O.V.
    Uvarov S.I.
    [J]. Russian Microelectronics, 2021, 50 (08) : 623 - 627
  • [35] Machine-learning correction to density-functional crystal structure optimization
    Robert Hussein
    Jonathan Schmidt
    Tomás Barros
    Miguel A. L. Marques
    Silvana Botti
    [J]. MRS Bulletin, 2022, 47 : 765 - 771
  • [36] Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials
    Mortazavi, Bohayra
    Rajabpour, Ali
    Zhuang, Xiaoying
    Rabczuk, Timon
    Shapeev, Alexander, V
    [J]. CARBON, 2022, 186 : 501 - 508
  • [37] Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations
    Miksch, April M.
    Morawietz, Tobias
    Kaestner, Johannes
    Urban, Alexander
    Artrith, Nongnuch
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [38] Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials
    Arabha, Saeed
    Aghbolagh, Zahra Shokri
    Ghorbani, Khashayar
    Hatam-Lee, S. Milad
    Rajabpour, Ali
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (21)
  • [39] Machine-learning micropattern manufacturing
    Wang, Si
    Shen, Ziao
    Shen, Zhenyu
    Dong, Yuanjun
    Li, Yanran
    Cao, Yuxin
    Zhang, Yanmei
    Guo, Shengshi
    Shuai, Jianwei
    Yang, Yun
    Lin, Changjian
    Chen, Xun
    Zhang, Xingcai
    Huang, Qiaoling
    [J]. NANO TODAY, 2021, 38
  • [40] Machine-learning competition announced
    Erickson, J
    [J]. DR DOBBS JOURNAL, 1997, 22 (05): : 16 - 16