Geometry of Gaussian free field sign clusters and random interlacements

被引:2
|
作者
Drewitz, Alexander [1 ]
Prevost, Alexis [2 ]
Rodriguez, Pierre-Francois [3 ]
机构
[1] Univ Cologne, Dept Math Informat, D-50931 Cologne, Germany
[2] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词
60K35; 60G15; 60G60; 82B43; LEVEL-SET PERCOLATION; SIMPLE RANDOM-WALK; DISCRETE CYLINDERS; VOLUME GROWTH; HEAT KERNELS; VACANT SET; DISCONNECTION; INEQUALITIES; SYSTEMS; TORUS;
D O I
10.1007/s00440-024-01285-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a large class of amenable transient weighted graphs G, we prove that the sign clusters of the Gaussian free field on G fall into a regime of strong supercriticality, in which two infinite sign clusters dominate (one for each sign), and finite sign clusters are necessarily tiny, with overwhelming probability. Examples of graphs belonging to this class include regular lattices such as Z d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}<^>d$$\end{document} , for d >= 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} , but also more intricate geometries, such as Cayley graphs of suitably growing (finitely generated) non-Abelian groups, and cases in which random walks exhibit anomalous diffusive behavior, for instance various fractal graphs. As a consequence, we also show that the vacant set of random interlacements on these objects, introduced by Sznitman (Ann Math 171(3):2039-2087, 2010), and which is intimately linked to the free field, contains an infinite connected component at small intensities. In particular, this result settles an open problem from Sznitman (Invent Math 187(3):645-706, 2012).
引用
收藏
页数:96
相关论文
共 50 条
  • [1] RANDOM INTERLACEMENTS AND THE GAUSSIAN FREE FIELD
    Sznitman, Alain-Sol
    ANNALS OF PROBABILITY, 2012, 40 (06): : 2400 - 2438
  • [2] FROM LOOP CLUSTERS AND RANDOM INTERLACEMENTS TO THE FREE FIELD
    Lupu, Titus
    ANNALS OF PROBABILITY, 2016, 44 (03): : 2117 - 2146
  • [3] Level set percolation for random interlacements and the Gaussian free field
    Rodriguez, Pierre-Francois
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (04) : 1469 - 1502
  • [4] ON (Z/NZ)(2)-OCCUPATION TIMES, THE GAUSSIAN FREE FIELD, AND RANDOM INTERLACEMENTS
    Sznitman, Alain-Sol
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2012, 7 (04): : 565 - 602
  • [5] The Sign Clusters of the Massless Gaussian Free Field Percolate on (and more)
    Drewitz, Alexander
    Prevost, Alexis
    Rodriguez, Pierre-Franccois
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 362 (02) : 513 - 546
  • [6] Gaussian free field in the background of correlated random clusters, formed by metallic nanoparticles
    Jafar Cheraghalizadeh
    Morteza N. Najafi
    Hossein Mohammadzadeh
    The European Physical Journal B, 2018, 91
  • [7] Gaussian free field in the background of correlated random clusters, formed by metallic nanoparticles
    Cheraghalizadeh, Jafar
    Najafi, Morteza N.
    Mohammadzadeh, Hossein
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (05):
  • [8] GEOMETRY-ADAPTED GAUSSIAN RANDOM FIELD REGRESSION
    Zhang, Zhen
    Wang, Mianzhi
    Xiang, Yijian
    Nehorai, Arye
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6528 - 6532
  • [9] ON THE RADIUS OF GAUSSIAN FREE FIELD EXCURSION CLUSTERS
    Goswami, Subhajit
    Rodriguez, Pierre-Francois
    Severo, Franco
    ANNALS OF PROBABILITY, 2022, 50 (05): : 1675 - 1724
  • [10] POINT PROCESS OF CLUSTERS FOR A STATIONARY GAUSSIAN RANDOM FIELD ON A LATTICE
    Lu, Yingyin
    Guo, Jinhui
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2023, 43 (02): : 247 - 262