On the convolution of convex 2-gons

被引:0
|
作者
Chuaqui, Martin [1 ]
Hernandez, Rodrigo [2 ]
Llinares, Adrian [3 ,4 ]
Mas, Alejandro [5 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Casilla 306, Santiago 22, Chile
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Ave Padre Hurtado 750, Vina Del Mar, Chile
[3] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[4] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[5] Univ Valencia, Dept Anal Matematico, Burjassot 46100, Spain
关键词
Convolution; Convex mappings; 2-gons;
D O I
10.1016/j.jmaa.2024.128387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convolution of functions of the form f alpha ( z) := /I 1+ z \ alpha - 1 1 -z , 2 alpha which map the open unit disk of the complex plane onto polygons of 2 edges when alpha is an element of (0 , 1). Inspired by a work of Cima, we study the limits of convolutions of finitely many f alpha and the convolution of arbitrary unbounded convex mappings. The analysis for the latter is based on the notion of angle at infinity , which provides an estimate for the growth at infinity and determines whether the convolution is bounded or not. A generalization to an arbitrary number of factors shows that the convolution of n randomly chosen unbounded convex mappings has a probability of 1 /n! of remaining unbounded. We provide the precise asymptotic behavior of the coefficients of the functions f alpha . (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A note on the convex infimum convolution inequality
    Feldheim, Naomi
    Marsiglietti, Arnaud
    Nayar, Piotr
    Wang, Jing
    BERNOULLI, 2018, 24 (01) : 257 - 270
  • [32] Convolution operators in A-∞ for convex domains
    Abanin, Alexander V.
    Ishimura, Ryuichi
    Khoi, Le Hai
    ARKIV FOR MATEMATIK, 2012, 50 (01): : 1 - 22
  • [33] Convolution and Convex Combination of Harmonic Mappings
    Beig, Subzar
    Ravichandran, V.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (05) : 1467 - 1486
  • [34] On convolution of L-convex functions
    Tamura, A
    OPTIMIZATION METHODS & SOFTWARE, 2003, 18 (02): : 231 - 245
  • [35] On Convolution and Convex Combination of Harmonic Mappings
    El-Faqeer, Ahmad Sulaiman Ahmad
    Ng, Zhen Chuan
    Supramaniam, Shamani
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [36] Which n-Venn diagrams can be drawn with convex k-Gons?
    Carroll, Jeremy
    Ruskey, Frank
    Weston, Mark
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (04) : 619 - 628
  • [37] Distance Distribution in Convex n-Gons: Mathematical Framework and Wireless Networking Applications
    Baltzis, Konstantinos B.
    WIRELESS PERSONAL COMMUNICATIONS, 2013, 71 (02) : 1487 - 1503
  • [38] Heuristic Algorithms for Finding Area Constrained Non-Convex k-gons
    Parakkat, Amal Dev
    Joseph, Philumon
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 : 131 - 142
  • [39] Distance Distribution in Convex n-Gons: Mathematical Framework and Wireless Networking Applications
    Konstantinos B. Baltzis
    Wireless Personal Communications, 2013, 71 : 1487 - 1503
  • [40] Which n-Venn Diagrams Can Be Drawn with Convex k-Gons?
    Jeremy Carroll
    Frank Ruskey
    Mark Weston
    Discrete & Computational Geometry, 2007, 37 : 619 - 628