A note on the convex infimum convolution inequality

被引:4
|
作者
Feldheim, Naomi [1 ]
Marsiglietti, Arnaud [1 ]
Nayar, Piotr [1 ]
Wang, Jing [1 ]
机构
[1] Univ Minnesota, Inst Math & Its Applicat, 207 Church St SE,306 Lind Hall, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
concentration of measure; convex sets; infimum convolution; Poincare inequality; product measures; LOGARITHMIC SOBOLEV INEQUALITIES; HYPERCONTRACTIVITY; POINCARE;
D O I
10.3150/16-BEJ875
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We characterize the symmetric real random variables which satisfy the one dimensional convex infimum convolution inequality of Maurey. We deduce Talagrand's two-level concentration for random vector (X-1,, X-n), where X-i 's are independent real random variables whose tails satisfy certain exponential type decay condition.
引用
收藏
页码:257 / 270
页数:14
相关论文
共 50 条