DENSITY OF INFIMUM-STABLE CONVEX CONES

被引:3
|
作者
PROLLA, JB
机构
关键词
D O I
10.2307/2160379
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a compact Hausdorff space and let A be a linear subspace of C(X; R) containing the constant functions, and separating points from probability measures. Then the inf-lattice generated by A is uniformly dense in C(X; R) . We show that this is a corollary of the Choquet-Deny Theorem, thus simplifying the proof and extending to the nonmetric case a result of McAfee and Reny.
引用
下载
收藏
页码:175 / 178
页数:4
相关论文
共 50 条
  • [1] INFIMUM-STABLE CONVEX CONES AND APPROXIMATION
    FLOSSER, HO
    IRMISCH, R
    ROTH, W
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1981, 42 (JAN) : 104 - 120
  • [2] Strictly stable distributions on convex cones
    Davydov, Touri
    Molchanov, Ilya
    Zuyev, Sergei
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 259 - 321
  • [3] Stable distributions and harmonic analysis on convex cones
    Davydov, Youri
    Molchanov, Ilya
    Zuyev, Sergei
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (05) : 321 - 326
  • [4] A note on the convex infimum convolution inequality
    Feldheim, Naomi
    Marsiglietti, Arnaud
    Nayar, Piotr
    Wang, Jing
    BERNOULLI, 2018, 24 (01) : 257 - 270
  • [5] Rough convex cones and rough convex fuzzy cones
    Liao, Zuhua
    Zhou, Juan
    SOFT COMPUTING, 2012, 16 (12) : 2083 - 2087
  • [6] Rough convex cones and rough convex fuzzy cones
    Zuhua Liao
    Juan Zhou
    Soft Computing, 2012, 16 : 2083 - 2087
  • [7] Compact anisotropic stable hypersurfaces with free boundary in convex solid cones
    Rosales, Cesar
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
  • [8] Compact anisotropic stable hypersurfaces with free boundary in convex solid cones
    César Rosales
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [9] Characterization of latticial cones in Hilbert spaces by isotonicity and generalized infimum
    Nemeth, S. Z.
    ACTA MATHEMATICA HUNGARICA, 2010, 127 (04) : 376 - 390
  • [10] Characterization of latticial cones in Hilbert spaces by isotonicity and generalized infimum
    S. Z. Németh
    Acta Mathematica Hungarica, 2010, 127 : 376 - 390