On the convolution of convex 2-gons

被引:0
|
作者
Chuaqui, Martin [1 ]
Hernandez, Rodrigo [2 ]
Llinares, Adrian [3 ,4 ]
Mas, Alejandro [5 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Casilla 306, Santiago 22, Chile
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Ave Padre Hurtado 750, Vina Del Mar, Chile
[3] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[4] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[5] Univ Valencia, Dept Anal Matematico, Burjassot 46100, Spain
关键词
Convolution; Convex mappings; 2-gons;
D O I
10.1016/j.jmaa.2024.128387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convolution of functions of the form f alpha ( z) := /I 1+ z \ alpha - 1 1 -z , 2 alpha which map the open unit disk of the complex plane onto polygons of 2 edges when alpha is an element of (0 , 1). Inspired by a work of Cima, we study the limits of convolutions of finitely many f alpha and the convolution of arbitrary unbounded convex mappings. The analysis for the latter is based on the notion of angle at infinity , which provides an estimate for the growth at infinity and determines whether the convolution is bounded or not. A generalization to an arbitrary number of factors shows that the convolution of n randomly chosen unbounded convex mappings has a probability of 1 /n! of remaining unbounded. We provide the precise asymptotic behavior of the coefficients of the functions f alpha . (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ON THE MAXIMUM NUMBER OF COPLANAR POINTS CONTAINING NO CONVEX N-GONS
    KALBFLEISCH, JG
    STANTON, RG
    UTILITAS MATHEMATICA, 1995, 47 : 235 - 245
  • [22] COUNTING K-SUBSETS AND CONVEX K-GONS IN THE PLANE
    ROTE, G
    WOEGINGER, G
    ZHU, BH
    WANG, ZY
    INFORMATION PROCESSING LETTERS, 1991, 38 (03) : 149 - 151
  • [23] Finding Sets of Points without Empty Convex 6-Gons
    Discrete & Computational Geometry, 2002, 29 : 153 - 158
  • [24] Finding sets of points without empty convex 6-gons
    Overmars, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 29 (01) : 153 - 158
  • [25] On convolution, convex, and starlike mappings
    Chuaqui, Martin
    Osgood, Brad
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (02): : 431 - 440
  • [26] EPIMORPHISM OF CONVOLUTION IN CONVEX DOMAINS
    EPIFANOV, OV
    DOKLADY AKADEMII NAUK SSSR, 1974, 217 (01): : 18 - 19
  • [27] On the convolution and subordination of convex functions
    Piejko, Krzysztof
    Sokol, Janusz
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 448 - 453
  • [28] ON THE FIRST UNKNOWN VALUE OF TWO FUNCTIONS FOR CONVEX LATTICE v-GONS
    Kolodziejczyk, Krzysztof
    Olszewska, Daria
    ARS COMBINATORIA, 2014, 113 : 263 - 279
  • [29] On the convolution body of two convex bodies
    Tsolomitis, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (01): : 63 - 67
  • [30] Convolution and Convex Combination of Harmonic Mappings
    Subzar Beig
    V. Ravichandran
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 1467 - 1486