A model-based MR parameter mapping network robust to substantial variations in acquisition settings

被引:1
|
作者
Lu, Qiqi [1 ,2 ,3 ,4 ,5 ,6 ]
Li, Jialong [1 ,2 ,3 ,4 ,5 ,6 ]
Lian, Zifeng [1 ,2 ,3 ,4 ,5 ,6 ]
Zhang, Xinyuan [1 ,2 ]
Feng, Qianjin [1 ,2 ]
Chen, Wufan [1 ,2 ]
Ma, Jianhua [1 ,2 ]
Feng, Yanqiu [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou 510000, Peoples R China
[2] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou 510000, Peoples R China
[3] Southern Med Univ, Guangdong Hong Kong Macao Greater Bay Area Ctr Bra, Hong Kong 510000, Guangdong, Peoples R China
[4] Southern Med Univ, Key Lab Mental Hlth Minist Educ & Guangdong, Guangzhou 510000, Peoples R China
[5] Southern Med Univ, Guangdong Hong Kong Joint Lab Psychiat Disorders, Guangzhou 510000, Guangdong, Peoples R China
[6] Southern Med Univ, Shunde Hosp, Peoples Hosp Shunde 1, Dept Radiol, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic resonance imaging; Parameter mapping; Deep learning; Regularization; RELAXATION-TIMES; INVERSE PROBLEMS; RECONSTRUCTION; REGULARIZATION; BRAIN; ALGORITHM; TISSUE;
D O I
10.1016/j.media.2024.103148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning methods show great potential for the efficient and precise estimation of quantitative parameter maps from multiple magnetic resonance (MR) images. Current deep learning-based MR parameter mapping (MPM) methods are mostly trained and tested using data with specific acquisition settings. However, scan protocols usually vary with centers, scanners, and studies in practice. Thus, deep learning methods applicable to MPM with varying acquisition settings are highly required but still rarely investigated. In this work, we develop a model-based deep network termed MMPM-Net for robust MPM with varying acquisition settings. A deep learning-based denoiser is introduced to construct the regularization term in the nonlinear inversion problem of MPM. The alternating direction method of multipliers is used to solve the optimization problem and then unrolled to construct MMPM-Net. The variation in acquisition parameters can be addressed by the data fidelity component in MMPM-Net. Extensive experiments are performed on R2 mapping and R1 mapping datasets with substantial variations in acquisition settings, and the results demonstrate that the proposed MMPM-Net method outperforms other state-of-the-art MR parameter mapping methods both qualitatively and quantitatively.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] MODEL-BASED MR PARAMETER MAPPING WITH SPARSITY CONSTRAINT
    Zhao, Bo
    Lam, Fan
    Lu, Wenmiao
    Liang, Zhi-Pei
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1 - 4
  • [2] Model-Based MR Parameter Mapping With Sparsity Constraints: Parameter Estimation and Performance Bounds
    Zhao, Bo
    Lam, Fan
    Liang, Zhi-Pei
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (09) : 1832 - 1844
  • [3] Model-based approaches for robust parameter design
    Kim, DC
    Jones, DL
    COMPUTER AIDED OPTIMUM DESIGN OF STRUCTURES V, 1997, : 507 - 521
  • [4] Model-based multi-parameter mapping
    Balbastre, Yael
    Brudfors, Mikael
    Azzarito, Michela
    Lambert, Christian
    Callaghan, Martina F.
    Ashburner, John
    MEDICAL IMAGE ANALYSIS, 2021, 73
  • [5] Robust Model-Based Registration of Cardiac MR Images for T1 and ECV Mapping
    Tilborghs, Sofie
    Dresselaers, Tom
    Claus, Piet
    Claessen, Guido
    Bogaert, Jan
    Maes, Frederik
    Suetens, Paul
    FUNCTIONAL IMAGING AND MODELLING OF THE HEART, 2017, 10263 : 42 - 50
  • [6] High-performance rapid MR parameter mapping using model-based deep adversarial learning
    Liu, Fang
    Kijowski, Richard
    Feng, Li
    El Fakhri, Georges
    MAGNETIC RESONANCE IMAGING, 2020, 74 : 152 - 160
  • [7] Robust model-based design of experiments for guaranteed parameter estimation
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2017, 40B : 1639 - 1644
  • [8] Robust model-based control and stability analysis of PMSM drive with DC-link voltage and parameter variations
    Mehrasa, Majid
    Gholinezhadomran, Hamidreza
    Tarassodi, Pouya
    Rodrigues, Eduardo M. G.
    Salehfar, Hossein
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 17
  • [9] Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings Rejoinder
    Diggle, Peter J.
    Giorgi, Emanuele
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1119 - 1120
  • [10] Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings Comment
    Moraga, Paula
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1110 - 1111