On two conjectures related to cubic residues

被引:0
|
作者
Zhao, Xiaopeng [1 ]
Cao, Zhenfu [2 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] East China Normal Univ, Dept Cryptog & Cyber Secur, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Cubic residuosity; Cubic residue character; Gauss sums; Calculation formula;
D O I
10.1007/s13226-024-00626-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper by Yuan and Zhang (Indian J. Pure Appl. Math. 54(3):806-815, 2023), the authors put forward two conjectures regarding S3(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_3(p)$$\end{document} which is the number of all integers a is an element of{1,2,& mldr;,p-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \{1,2,\ldots ,p-1\}$$\end{document} such that a+a-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+a<^>{-1}$$\end{document} and a-a-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a-a<^>{-1}$$\end{document} are both cubic residues modulo a prime p equivalent to 1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \pmod {3}$$\end{document}. In this paper, we disprove these conjectures and use the theory of cubic residuosity to determine the specific formula for S3(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_3(p)$$\end{document} when 2 is a cubic non-residue modulo p.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On two rationality conjectures for cubic fourfolds
    Addington, Nicolas
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (01) : 1 - 13
  • [2] On cubic residues and related problems
    Yuan, Xiaodan
    Zhang, Wenpeng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 806 - 815
  • [3] On cubic residues and related problems
    Xiaodan Yuan
    Wenpeng Zhang
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 806 - 815
  • [4] Proof of three conjectures on determinants related to quadratic residues
    Grinberg, Darij
    Sun, Zhi-Wei
    Zhao, Lilu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 3734 - 3746
  • [5] Proofs of two conjectures related to the thermodynamic Bethe Ansatz
    Tracy, CA
    Widom, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (03) : 667 - 680
  • [6] PROOF OF SOME CONJECTURES INVOLVING QUADRATIC RESIDUES
    Petrov, Fedor
    Sun, Zhi-Wei
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 589 - 597
  • [7] Two Conjectures on Herodotus
    Stefec, Rudolf
    GYMNASIUM, 2012, 119 (02) : 183 - 188
  • [8] On Two Conjectures of Steinhaus
    Costin Vîlcu
    Geometriae Dedicata, 2000, 79 : 267 - 275
  • [9] On the two conjectures of Graffiti
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 385 (1-3) : 369 - 379
  • [10] On two conjectures of Steinhaus
    Vîlcu, C
    GEOMETRIAE DEDICATA, 2000, 79 (03) : 267 - 275