We disprove two conjectures of H. Steinhaus by showing that: (1) there is a convex surface S such that for any point x on S and any point y in the set Fx of farthest points from x, there are at most two segments from x to y; (2) the properties \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left| {Fx} \right| = 1$$
\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${F_{F_x } = x}$$
\end{document}do not characterize the sphere.
机构:
Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
Zeng, Xiangneng
Yuan, Pingzhi
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
机构:
South China Normal Univ, Sch Math Sci, Guangzhou, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China
Zhang, Weilin
Yuan, Pingzhi
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China