On Two Conjectures of Steinhaus

被引:0
|
作者
Costin Vîlcu
机构
[1] Institute of Mathematics of the Romanian Academy,
来源
Geometriae Dedicata | 2000年 / 79卷
关键词
convex surface; centrally symmetric; intrinsic distance; (geodesic) segment; farthest points.;
D O I
暂无
中图分类号
学科分类号
摘要
We disprove two conjectures of H. Steinhaus by showing that: (1) there is a convex surface S such that for any point x on S and any point y in the set Fx of farthest points from x, there are at most two segments from x to y; (2) the properties \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left| {Fx} \right| = 1$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${F_{F_x } = x}$$ \end{document}do not characterize the sphere.
引用
收藏
页码:267 / 275
页数:8
相关论文
共 50 条
  • [21] 'ACCORDING TO STEINHAUS'
    OSIECKA, A
    PARIS REVIEW, 1992, (124): : 134 - 135
  • [22] On two conjectures about the intersection distribution
    Li, Yubo
    Li, Kangquan
    Qu, Longjiang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (04) : 1289 - 1298
  • [23] On Two Conjectures of Spectral Graph Theory
    Das, Kinkar Ch.
    Liu, Muhuo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 43 - 51
  • [24] On two conjectures about the intersection distribution
    Yubo Li
    Kangquan Li
    Longjiang Qu
    Journal of Algebraic Combinatorics, 2022, 55 : 1289 - 1298
  • [25] On Two Conjectures of Spectral Graph Theory
    Kinkar Ch. Das
    Muhuo Liu
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 43 - 51
  • [26] Counterexamples to Two Conjectures in the Kourovka Notebook
    Skresanov, S., V
    ALGEBRA AND LOGIC, 2019, 58 (03) : 249 - 253
  • [27] A NOTE ON TWO OF VUKMAN'S CONJECTURES
    Fahid, Brahim
    MATEMATICKI VESNIK, 2019, 71 (03): : 190 - 195
  • [28] Two conjectures on Trinajs']jstic index
    Wang, Jiajia
    Lin, Zhen
    Cai, Min
    Zhang, Shumin
    FILOMAT, 2024, 38 (21) : 7627 - 7633
  • [29] Proof of two conjectures of Guo and Schlosser
    Yu, Menglin
    Wang, Xiaoxia
    RAMANUJAN JOURNAL, 2022, 58 (01): : 239 - 252
  • [30] On two conjectures concerning convex curves
    Sedykh, V
    Shapiro, B
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2005, 16 (10) : 1157 - 1173