On two conjectures related to cubic residues

被引:0
|
作者
Zhao, Xiaopeng [1 ]
Cao, Zhenfu [2 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] East China Normal Univ, Dept Cryptog & Cyber Secur, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Cubic residuosity; Cubic residue character; Gauss sums; Calculation formula;
D O I
10.1007/s13226-024-00626-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper by Yuan and Zhang (Indian J. Pure Appl. Math. 54(3):806-815, 2023), the authors put forward two conjectures regarding S3(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_3(p)$$\end{document} which is the number of all integers a is an element of{1,2,& mldr;,p-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \{1,2,\ldots ,p-1\}$$\end{document} such that a+a-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+a<^>{-1}$$\end{document} and a-a-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a-a<^>{-1}$$\end{document} are both cubic residues modulo a prime p equivalent to 1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \pmod {3}$$\end{document}. In this paper, we disprove these conjectures and use the theory of cubic residuosity to determine the specific formula for S3(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_3(p)$$\end{document} when 2 is a cubic non-residue modulo p.
引用
收藏
页数:8
相关论文
共 50 条