On two conjectures related to cubic residues

被引:0
|
作者
Zhao, Xiaopeng [1 ]
Cao, Zhenfu [2 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] East China Normal Univ, Dept Cryptog & Cyber Secur, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Cubic residuosity; Cubic residue character; Gauss sums; Calculation formula;
D O I
10.1007/s13226-024-00626-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper by Yuan and Zhang (Indian J. Pure Appl. Math. 54(3):806-815, 2023), the authors put forward two conjectures regarding S3(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_3(p)$$\end{document} which is the number of all integers a is an element of{1,2,& mldr;,p-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \{1,2,\ldots ,p-1\}$$\end{document} such that a+a-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+a<^>{-1}$$\end{document} and a-a-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a-a<^>{-1}$$\end{document} are both cubic residues modulo a prime p equivalent to 1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \pmod {3}$$\end{document}. In this paper, we disprove these conjectures and use the theory of cubic residuosity to determine the specific formula for S3(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_3(p)$$\end{document} when 2 is a cubic non-residue modulo p.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Two conjectures on an addition theorem
    Zeng, Xiangneng
    Yuan, Pingzhi
    ACTA ARITHMETICA, 2011, 148 (04) : 395 - 411
  • [22] On main conjectures in non-commutative Iwasawa theory and related conjectures
    Burns, David
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 698 : 105 - 159
  • [23] On two conjectures of irreducible polynomials
    Zhang, Weilin
    Yuan, Pingzhi
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (11) : 4879 - 4884
  • [24] On two conjectures on packing of graphs
    Bollobás, B
    Kostochka, A
    Nakprasit, K
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (5-6): : 723 - 736
  • [25] Two conjectures on the chromatic polynomial
    Avis, D
    De Simone, C
    Nobili, P
    LATIN 2000: THEORETICAL INFORMATICS, 2000, 1776 : 154 - 162
  • [26] On two Kuznetsov's conjectures
    Oschmann, Florian
    EXAMPLES AND COUNTEREXAMPLES, 2023, 4
  • [27] On two conjectures in the theory of numbers
    Ingham, AE
    AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 : 313 - 319
  • [28] Irrationality of generic cubic threefold via Weil's conjectures
    Markushevich, Dimitri
    Roulleau, Xavier
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (07)
  • [30] On distribution properties of cubic residues
    Hu Jiayuan
    Chen Zhuoyu
    AIMS MATHEMATICS, 2020, 5 (06): : 6051 - 6060