Hyper-parameter Optimization Using Continuation Algorithms

被引:1
|
作者
Rojas-Delgado, Jairo [1 ]
Jimenez, J. A. [2 ]
Bello, Rafael [3 ]
Lozano, J. A. [1 ,4 ]
机构
[1] Basque Ctr Appl Math, Bilbao, Spain
[2] Univ Ciencias Informat, Havana, Cuba
[3] Univ Cent Las Villas, Santa Clara, Cuba
[4] Univ Basque Country UPV EHU, Donosti, Intelligent Syst Grp, Donostia San Sebastian, Spain
来源
METAHEURISTICS, MIC 2022 | 2023年 / 13838卷
关键词
Hyper-parameter; Optimization; Continuation; Machine learning;
D O I
10.1007/978-3-031-26504-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyper-parameter optimization is a common task in many application areas and a challenging optimization problem. In this paper, we introduce an approach to search for hyper-parameters based on continuation algorithms that can be coupled with existing hyper-parameter optimization methods. Our continuation approach can be seen as a heuristic to obtain lower fidelity surrogates of the fitness function. In our experiments, we conduct hyper-parameter optimization of neural networks trained using a benchmark set of forecasting regression problems, where generalization from unseen data is required. Our results show a small but statistically significant improvement in accuracy with respect to the state-of-the-art without negatively affecting the execution time.
引用
收藏
页码:365 / 377
页数:13
相关论文
共 50 条
  • [21] Classification complexity assessment for hyper-parameter optimization
    Cai, Ziyun
    Long, Yang
    Shao, Ling
    PATTERN RECOGNITION LETTERS, 2019, 125 : 396 - 403
  • [22] The Tabu_Genetic Algorithm: A Novel Method for Hyper-Parameter Optimization of Learning Algorithms
    Guo, Baosu
    Hu, Jingwen
    Wu, Wenwen
    Peng, Qingjin
    Wu, Fenghe
    ELECTRONICS, 2019, 8 (05)
  • [23] An efficient hyper-parameter optimization method for supervised learning
    Shi, Ying
    Qi, Hui
    Qi, Xiaobo
    Mu, Xiaofang
    APPLIED SOFT COMPUTING, 2022, 126
  • [24] CNN hyper-parameter optimization for environmental sound classification
    Inik, Ozkan
    APPLIED ACOUSTICS, 2023, 202
  • [25] AME: Attention and Memory Enhancement in Hyper-Parameter Optimization
    Xu, Nuo
    Chang, Jianlong
    Nie, Xing
    Huo, Chunlei
    Xiang, Shiming
    Pan, Chunhong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 480 - 489
  • [26] Generating Pool of Classifiers with Hyper-Parameter Optimization for Ensemble
    Wang, Qiushi
    Chan, Hian-Leng
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [27] RHOASo: An Early Stop Hyper-Parameter Optimization Algorithm
    Munoz Castaneda, Angel Luis
    DeCastro-Garcia, Noemi
    Escudero Garcia, David
    MATHEMATICS, 2021, 9 (18)
  • [28] MAP-INFORMED UNROLLED ALGORITHMS FOR HYPER-PARAMETER ESTIMATION
    Nguyen, Pascal
    Soubies, Emmanuel
    Chaux, Caroline
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2160 - 2164
  • [29] Flood susceptibility mapping using support vector regression and hyper-parameter optimization
    Salvati, Aryan
    Nia, Alireza Moghaddam
    Salajegheh, Ali
    Ghaderi, Kayvan
    Asl, Dawood Talebpour
    Al-Ansari, Nadhir
    Solaimani, Feridon
    Clague, John J.
    JOURNAL OF FLOOD RISK MANAGEMENT, 2023, 16 (04):
  • [30] On the Impact of Data Sampling on Hyper-parameter Optimisation of Recommendation Algorithms
    Montanari, Matteo
    Bernardis, Cesare
    Cremonesi, Paolo
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1399 - 1402