AME: Attention and Memory Enhancement in Hyper-Parameter Optimization

被引:3
|
作者
Xu, Nuo [1 ,2 ]
Chang, Jianlong [3 ]
Nie, Xing [1 ,2 ]
Huo, Chunlei [1 ,2 ]
Xiang, Shiming [1 ,2 ]
Pan, Chunhong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, NLPR, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Huawei Cloud & AI, Beijing, Peoples R China
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.00057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Training Deep Neural Networks (DNNs) is inherently subject to sensitive hyper-parameters and untimely feedbacks of performance evaluation. To solve these two difficulties, an efficient parallel hyper-parameter optimization model is proposed under the framework of Deep Reinforcement Learning (DRL). Technically, we develop Attention and Memory Enhancement (AME), that includes multi-head attention and memory mechanism to enhance the ability to capture both the short-term and long-term relationships between different hyper-parameter configurations, yielding an attentive sampling mechanism for searching highperformance configurations embedded into a huge search space. During the optimization of transformer-structured configuration searcher, a conceptually intuitive yet powerful strategy is applied to solve the problem of insufficient number of samples due to the untimely feedback. Experiments on three visual tasks, including image classification, object detection, semantic segmentation, demonstrate the effectiveness of AME.
引用
收藏
页码:480 / 489
页数:10
相关论文
共 50 条
  • [1] Random search for hyper-parameter optimization
    Département D'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, QC, H3C 3J7, Canada
    J. Mach. Learn. Res., (281-305):
  • [2] Random Search for Hyper-Parameter Optimization
    Bergstra, James
    Bengio, Yoshua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 281 - 305
  • [3] Hyper-parameter Optimization for Latent Spaces
    Veloso, Bruno
    Caroprese, Luciano
    Konig, Matthias
    Teixeira, Sonia
    Manco, Giuseppe
    Hoos, Holger H.
    Gama, Joao
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 249 - 264
  • [4] Federated learning with hyper-parameter optimization
    Kundroo, Majid
    Kim, Taehong
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (09)
  • [5] Gradient Hyper-parameter Optimization for Manifold Regularization
    Becker, Cassiano O.
    Ferreira, Paulo A. V.
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 2, 2013, : 339 - 344
  • [6] Bayesian Optimization for Accelerating Hyper-parameter Tuning
    Vu Nguyen
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 302 - 305
  • [7] Efficient Hyper-parameter Optimization with Cubic Regularization
    Shen, Zhenqian
    Yang, Hansi
    Li, Yong
    Kwok, James
    Yao, Quanming
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] A Comparative study of Hyper-Parameter Optimization Tools
    Shekhar, Shashank
    Bansode, Adesh
    Salim, Asif
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [9] Modified Grid Searches for Hyper-Parameter Optimization
    Lopez, David
    Alaiz, Carlos M.
    Dorronsoro, Jose R.
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020, 2020, 12344 : 221 - 232
  • [10] Hybrid Hyper-parameter Optimization for Collaborative Filtering
    Szabo, Peter
    Genge, Bela
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 210 - 217