Hyper-parameter Optimization Using Continuation Algorithms

被引:1
|
作者
Rojas-Delgado, Jairo [1 ]
Jimenez, J. A. [2 ]
Bello, Rafael [3 ]
Lozano, J. A. [1 ,4 ]
机构
[1] Basque Ctr Appl Math, Bilbao, Spain
[2] Univ Ciencias Informat, Havana, Cuba
[3] Univ Cent Las Villas, Santa Clara, Cuba
[4] Univ Basque Country UPV EHU, Donosti, Intelligent Syst Grp, Donostia San Sebastian, Spain
来源
METAHEURISTICS, MIC 2022 | 2023年 / 13838卷
关键词
Hyper-parameter; Optimization; Continuation; Machine learning;
D O I
10.1007/978-3-031-26504-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyper-parameter optimization is a common task in many application areas and a challenging optimization problem. In this paper, we introduce an approach to search for hyper-parameters based on continuation algorithms that can be coupled with existing hyper-parameter optimization methods. Our continuation approach can be seen as a heuristic to obtain lower fidelity surrogates of the fitness function. In our experiments, we conduct hyper-parameter optimization of neural networks trained using a benchmark set of forecasting regression problems, where generalization from unseen data is required. Our results show a small but statistically significant improvement in accuracy with respect to the state-of-the-art without negatively affecting the execution time.
引用
收藏
页码:365 / 377
页数:13
相关论文
共 50 条
  • [31] Hyper-Parameter Optimization for Improving the Performance of Grammatical Evolution
    Wang, Hao
    Lou, Yitan
    Back, Thomas
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2649 - 2656
  • [32] Cultural Events Classification using Hyper-parameter Optimization of Deep Learning Technique
    Feng Zhipeng
    Gani, Hamdan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 603 - 609
  • [33] Early prediction model for coronary heart disease using genetic algorithms, hyper-parameter optimization and machine learning techniques
    Priya, R. L.
    Jinny, S. Vinila
    Mate, Yash Vijay
    HEALTH AND TECHNOLOGY, 2021, 11 (01) : 63 - 73
  • [34] Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algorithm
    Gulcu, Ayla
    Kus, Zeki
    IEEE ACCESS, 2020, 8 : 52528 - 52540
  • [35] Early prediction model for coronary heart disease using genetic algorithms, hyper-parameter optimization and machine learning techniques
    Priya R. L
    S. Vinila Jinny
    Yash Vijay Mate
    Health and Technology, 2021, 11 : 63 - 73
  • [36] Hyper-Parameter Optimization for Privacy-Preserving Record Linkage
    Yu, Joyce
    Nabaglo, Jakub
    Vatsalan, Dinusha
    Henecka, Wilko
    Thorne, Brian
    ECML PKDD 2020 WORKSHOPS, 2020, 1323 : 281 - 296
  • [37] Rethinking density ratio estimation based hyper-parameter optimization
    Fan, Zi-En
    Lian, Feng
    Li, Xin-Ran
    NEURAL NETWORKS, 2025, 182
  • [38] HYPER-PARAMETER OPTIMIZATION OF DEEP CONVOLUTIONAL NETWORKS FOR OBJECT RECOGNITION
    Talathi, Sachin S.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3982 - 3986
  • [39] Hyper-parameter optimization of gradient boosters for flood susceptibility analysis
    Lai, Tuan Anh
    Nguyen, Ngoc-Thach
    Bui, Quang-Thanh
    TRANSACTIONS IN GIS, 2023, 27 (01) : 224 - 238
  • [40] A Hyper-Parameter Optimization Approach to Automated Radiotherapy Treatment Planning
    Haaf, S.
    Kearney, V.
    Interian, Y.
    Valdes, G.
    Solberg, T.
    Perez-Andujar, A.
    MEDICAL PHYSICS, 2017, 44 (06) : 2901 - 2901