Bayesian analysis of experimental and observational data: a review and illustration of the BANOVA R package

被引:0
|
作者
Wedel, Michel [1 ]
Dong, Chen [2 ]
Kopyakova, Anna [3 ]
机构
[1] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
[2] Snapchat, Santa Monica, CA USA
[3] Object Platform, Amsterdam, Netherlands
关键词
R Package; Bayesian statistics; Regression; Analysis of variance; Poisson distribution; Simple effects; Floodlight analysis; Mediation analysis;
D O I
10.1057/s41270-024-00312-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article provides a review of the BANOVA R package and an illustration of its uses in Marketing Analytics. The package allows users to conduct regression analyses and analysis of variance for between-subjects, within-subjects, and mixed designs, where the dependent variable follows one of a variety of continuous or discrete distribution functions and the data may have a hierarchical structure. The package uses stan as the underlying computing engine, and enables the calculation of simple effects, floodlight analysis, and mediation analysis. The R package is illustrated through a reanalysis of the observational data by Blake et al. (Psychol Sci 32:315-325, 2021) on the relationship between misogynistic tweets and domestic violence, and of the experimental data by Srna et al. (Psychol Sci 29:1942-1955, 2018) on the perception of multitasking.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Anthropometry: An R Package for Analysis of Anthropometric Data
    Vinue, Guillermo
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (06): : 1 - 39
  • [22] Compositional data analysis with 'R' and the package 'compositions'
    Van der Boogaart, K. G.
    Tolosana-Delgado, R.
    [J]. COMPOSITIONAL DATA ANALYSIS IN THE GEOSCIENCES: FROM THEORY TO PRACTICE, 2006, 264 : 119 - +
  • [23] ProcData: An R Package for Process Data Analysis
    Tang, Xueying
    Zhang, Susu
    Wang, Zhi
    Liu, Jingchen
    Ying, Zhiliang
    [J]. PSYCHOMETRIKA, 2021, 86 (04) : 1058 - 1083
  • [24] Analysis of Corneal Data in R with the rPACI Package
    Ramos-Lopez, Dario
    Maldonado, Ana D.
    [J]. R JOURNAL, 2021, 13 (02): : 321 - 335
  • [25] GENLIB: an R package for the analysis of genealogical data
    Héloïse Gauvin
    Jean-François Lefebvre
    Claudia Moreau
    Eve-Marie Lavoie
    Damian Labuda
    Hélène Vézina
    Marie-Hélène Roy-Gagnon
    [J]. BMC Bioinformatics, 16
  • [26] Improving Bayesian statistics understanding in the age of Big Data with the bayesvl R package
    Quan-Hoang Vuong
    Viet-Phuong La
    Minh-Hoang Nguyen
    Manh-Toan Ho
    Manh-Tung Ho
    Mantello, Peter
    [J]. SOFTWARE IMPACTS, 2020, 4
  • [27] inlabru: an R package for Bayesian spatial modelling from ecological survey data
    Bachl, Fabian E.
    Lindgren, Finn
    Borchers, David L.
    Illian, Janine B.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (06): : 760 - 766
  • [28] bnstruct: an R package for Bayesian Network structure learning in the presence of missing data
    Franzin, Alberto
    Sambo, Francesco
    Di Camillo, Barbara
    [J]. BIOINFORMATICS, 2017, 33 (08) : 1250 - 1252
  • [29] Bayesian propensity score analysis for clustered observational data
    Qi Zhou
    Catherine McNeal
    Laurel A. Copeland
    Justin P. Zachariah
    Joon Jin Song
    [J]. Statistical Methods & Applications, 2020, 29 : 335 - 355
  • [30] BayesCTDesign: An R Package for Bayesian Trial Design Using Historical Control Data
    Eggleston, Barry S.
    Ibrahim, Joseph G.
    McNeil, Becky
    Catellier, Diane
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (21): : 1 - 51