ProcData: An R Package for Process Data Analysis

被引:7
|
作者
Tang, Xueying [1 ]
Zhang, Susu [2 ]
Wang, Zhi [3 ]
Liu, Jingchen [3 ]
Ying, Zhiliang [3 ]
机构
[1] Univ Arizona, Tucson, AZ USA
[2] Univ Illinois, Urbana, IL USA
[3] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
process data analysis; multidimensional scaling; autoencoder; sequence model;
D O I
10.1007/s11336-021-09798-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Process data refer to data recorded in log files of computer-based items. These data, represented as timestamped action sequences, keep track of respondents' response problem-solving behaviors. Process data analysis aims at enhancing educational assessment accuracy and serving other assessment purposes by utilizing the rich information contained in response processes. The R package ProcData presented in this article is designed to provide tools for inspecting, processing, and analyzing process data. We define an S3 class 'proc' for organizing process data and extend generic methods summary and print for 'proc'. Feature extraction methods for process data are implemented in the package for compressing information in the irregular response processes into regular numeric vectors. ProcData also provides functions for making predictions from neural-network-based sequence models. In addition, a real dataset of response processes from the climate control item in the 2012 Programme for International Student Assessment is included in the package.
引用
收藏
页码:1058 / 1083
页数:26
相关论文
共 50 条
  • [1] ProcData: An R Package for Process Data Analysis
    Xueying Tang
    Susu Zhang
    Zhi Wang
    Jingchen Liu
    Zhiliang Ying
    [J]. Psychometrika, 2021, 86 : 1058 - 1083
  • [2] Hyperspectral Data Analysis in R: The hsdar Package
    Lehnert, Lukas W.
    Meyer, Hanna
    Obermeier, Wolfgang A.
    Silva, Brenner
    Regeling, Bianca
    Thies, Boris
    Bendix, Jorg
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 89 (12):
  • [3] An R package for the forward analysis of multivariate data
    Corbellini, Aldo
    Konis, Kjell
    [J]. DATA ANALYSIS, CLASSIFICATION AND THE FORWARD SEARCH, 2006, : 189 - 197
  • [4] An R package for divergence analysis of omics data
    Dinalankara, Wikum
    Ke, Qian
    Geman, Donald
    Marchionni, Luigi
    [J]. PLOS ONE, 2021, 16 (04):
  • [5] GENLIB: an R package for the analysis of genealogical data
    Gauvin, Heloise
    Lefebvre, Jean-Francois
    Moreau, Claudia
    Lavoie, Eve-Marie
    Labuda, Damian
    Vezina, Helene
    Roy-Gagnon, Marie-Helene
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [6] Compositional data analysis with 'R' and the package 'compositions'
    Van der Boogaart, K. G.
    Tolosana-Delgado, R.
    [J]. COMPOSITIONAL DATA ANALYSIS IN THE GEOSCIENCES: FROM THEORY TO PRACTICE, 2006, 264 : 119 - +
  • [7] Anthropometry: An R Package for Analysis of Anthropometric Data
    Vinue, Guillermo
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (06): : 1 - 39
  • [8] Analysis of Corneal Data in R with the rPACI Package
    Ramos-Lopez, Dario
    Maldonado, Ana D.
    [J]. R JOURNAL, 2021, 13 (02): : 321 - 335
  • [9] GENLIB: an R package for the analysis of genealogical data
    Héloïse Gauvin
    Jean-François Lefebvre
    Claudia Moreau
    Eve-Marie Lavoie
    Damian Labuda
    Hélène Vézina
    Marie-Hélène Roy-Gagnon
    [J]. BMC Bioinformatics, 16
  • [10] acc: An R package to process, visualize, and analyze accelerometer data
    Song, Jaejoon
    Swartz, Michael D.
    Basen-Engquist, Karen
    [J]. SOFTWARE IMPACTS, 2023, 18