Improving Bayesian statistics understanding in the age of Big Data with the bayesvl R package

被引:29
|
作者
Quan-Hoang Vuong [1 ,2 ]
Viet-Phuong La [2 ,3 ]
Minh-Hoang Nguyen [2 ,3 ]
Manh-Toan Ho [2 ,3 ]
Manh-Tung Ho [2 ,3 ,4 ]
Mantello, Peter [5 ]
机构
[1] Univ Libre Bruxelles, Ctr Emile Bernheim, B-1050 Brussels, Belgium
[2] Phenikaa Univ, Ctr Interdisciplinary Social Res, Hanoi 100803, Vietnam
[3] Vuong & Associates, AI Social Data Lab, 3-161 Thinh Quang, Hanoi 100000, Vietnam
[4] Vietnam Acad Social Sci, Inst Philosophy, 59 Lang Ha St, Hanoi 100000, Vietnam
[5] Ritsumeikan Asia Pacific Univ, Beppu, Oita 8748511, Japan
关键词
Bayesian network; MCMC; Ggplot2; Bayesvl; Big data; SCIENCE;
D O I
10.1016/j.simpa.2020.100016
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The exponential growth of social data both in volume and complexity has increasingly exposed many of the shortcomings of the conventional frequentist approach to statistics. The scientific community has called for careful usage of the approach and its inference. Meanwhile, the alternative method, Bayesian statistics, still faces considerable barriers toward a more widespread application. The bayesvl R package is an open program, designed for implementing Bayesian modeling and analysis using the Stan language's no-U-turn (NUTS) sampler. The package combines the ability to construct Bayesian network models using directed acyclic graphs (DAGs), the Markov chain Monte Carlo (MCMC) simulation technique, and the graphic capability of the ggplot2 package. As a result, it can improve the user experience and intuitive understanding when constructing and analyzing Bayesian network models. A case example is offered to illustrate the usefulness of the package for Big Data analytics and cognitive computing.
引用
收藏
页数:4
相关论文
共 49 条
  • [1] The bayesvl package: An R package for implementing and visualizing Bayesian statistics
    La, Viet-Phuong
    Vuong, Quan-Hoang
    Tran, Trung
    Nguyen, Minh-Hoang
    Ho, Manh-Toan
    Ho, Manh-Toan
    [J]. SOFTWAREX, 2022, 20
  • [2] parallelMCMCcombine: An R Package for Bayesian Methods for Big Data and Analytics
    Miroshnikov, Alexey
    Conlon, Erin M.
    [J]. PLOS ONE, 2014, 9 (09):
  • [3] AlignStatPlot: An R package and online tool for robust sequence alignment statistics and innovative visualization of big data
    Alsamman, Alsamman M.
    El Allali, Achraf
    Mokhtar, Morad M.
    Al-Sham'aa, Khaled
    Nassar, Ahmed E.
    Mousa, Khaled H.
    Kehel, Zakaria
    [J]. PLOS ONE, 2023, 18 (09):
  • [4] Challenges to Traditional Statistics in the Age of Big Data
    Chen Ming
    Zhu Xueshuai
    Jiang Qian
    [J]. 2019 INTERNATIONAL CONFERENCE ON ARTS, MANAGEMENT, EDUCATION AND INNOVATION (ICAMEI 2019), 2019, : 1073 - 1076
  • [5] Statistics in the Age of Big Data: Opportunities and Challenges
    Liu, Guoli
    [J]. PROCEEDINGS OF 3RD INTERNATIONAL SYMPOSIUM ON SOCIAL SCIENCE (ISSS 2017), 2017, 61 : 182 - 185
  • [6] BayesTwin: an R package for Bayesian analysis of twin data
    Schwabe, Inga
    van den Berg, Stephanie
    [J]. BEHAVIOR GENETICS, 2017, 47 (06) : 654 - 655
  • [7] The bdpar Package: Big Data Pipelining Architecture for R
    Ferreiro-Diaz, Miguel
    Cotos-Yanez, Tomas R.
    Mendez, Jose R.
    Ruano-Ordas, David
    [J]. R JOURNAL, 2021, 13 (01): : 130 - 144
  • [8] bayes4psy-An Open Source R Package for Bayesian Statistics in Psychology
    Demsar, Jure
    Repovs, Grega
    Strumbelj, Erik
    [J]. FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [9] The R package infiltrodiscR: A package for infiltrometer data analysis and an experience for improving data reproducibility in soil physics
    Giraldo, Carolina V.
    Acevedo, Sara E.
    Bonilla, Carlos A.
    [J]. SoftwareX, 2024, 28
  • [10] iBMQ: a R/Bioconductor package for integrated Bayesian modeling of eQTL data
    Imholte, Greg C.
    Scott-Boyer, Marie-Pier
    Labbe, Aurelie
    Deschepper, Christian F.
    Gottardo, Raphael
    [J]. BIOINFORMATICS, 2013, 29 (21) : 2797 - 2798