Stacked Graph Fusion Denoising Autoencoder for Hyperspectral Anomaly Detection

被引:0
|
作者
Zhang, Yongshan [1 ]
Li, Yijiang [1 ]
Wang, Xinxin [2 ]
Jiang, Xinwei [1 ]
Zhou, Yicong [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Noise reduction; Anomaly detection; Training; Image edge detection; Hyperspectral imaging; Geoscience and remote sensing; denoising autoencoder; graph neural network; hyperspectral imagery; REPRESENTATION;
D O I
10.1109/LGRS.2024.3416454
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we propose a stacked graph fusion denoising autoencoder (SGFDAE) for hyperspectral anomaly detection. Specifically, the global and local graphs are constructed from an HSI to explore potential structural and spatial information. With the designed graph fusion strategy, an advanced graph denoising autoencoder with deep architecture is developed in a hierarchical manner. To achieve better reconstruction and detection, a greedy layerwise unsupervised pretraining strategy is presented for network training. Experiments show that SGFDAE achieves 97.17%, 98.43%, and 98.90% detection accuracies by averaging the results of the datasets from three different scenes and outperforms the state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Iterative Graph Propagation for Hyperspectral Anomaly Detection
    Sheng, Jiahui
    Li, Xiaorun
    Chen, Shuhan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [32] Hyperspectral Anomaly Detection With Robust Graph Autoencoders
    Fan, Ganghui
    Ma, Yong
    Mei, Xiaoguang
    Fan, Fan
    Huang, Jun
    Ma, Jiayi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Hyperbolic Space-Based Autoencoder for Hyperspectral Anomaly Detection
    Sun, He
    Wang, Lizhi
    Zhang, Lei
    Gao, Lianru
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [34] Hyperspectral anomaly detection based on autoencoder and spatial morphology extraction
    Feng, Jing
    Zhang, Liyan
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)
  • [35] Convolutional Transformer-Inspired Autoencoder for Hyperspectral Anomaly Detection
    He, Zhi
    He, Dan
    Xiao, Man
    Lou, Anjun
    Lai, Guanglin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [36] A NEW AUTOENCODER TRAINING PARADIGM FOR UNSUPERVISED HYPERSPECTRAL ANOMALY DETECTION
    Merrill, Nicholas
    Olson, Colin C.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3967 - 3970
  • [37] Stacked Denoising Extreme Learning Machine Autoencoder Based on Graph Embedding for Feature Representation
    Ge, Hongwei
    Sun, Weiting
    Zhao, Mingde
    Yao, Yao
    IEEE ACCESS, 2019, 7 : 13433 - 13444
  • [38] Sequential Band Fusion for Hyperspectral Anomaly Detection
    Song, Meiping
    Li, Fang
    Yu, Chunyan
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] HYPERSPECTRAL ANOMALY DETECTION VIA BAND FUSION
    Li, Fang
    Song, Meiping
    Chang, Chein-, I
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2324 - 2327
  • [40] Deep feature fusion-based stacked denoising autoencoder for tag recommendation systems
    Fei, Zhengshun
    Wang, Jinglong
    Liu, Kangling
    Attahi, Eric
    Huang, Bingqiang
    IET CYBER-SYSTEMS AND ROBOTICS, 2023, 5 (03)