Stacked Graph Fusion Denoising Autoencoder for Hyperspectral Anomaly Detection

被引:0
|
作者
Zhang, Yongshan [1 ]
Li, Yijiang [1 ]
Wang, Xinxin [2 ]
Jiang, Xinwei [1 ]
Zhou, Yicong [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Noise reduction; Anomaly detection; Training; Image edge detection; Hyperspectral imaging; Geoscience and remote sensing; denoising autoencoder; graph neural network; hyperspectral imagery; REPRESENTATION;
D O I
10.1109/LGRS.2024.3416454
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we propose a stacked graph fusion denoising autoencoder (SGFDAE) for hyperspectral anomaly detection. Specifically, the global and local graphs are constructed from an HSI to explore potential structural and spatial information. With the designed graph fusion strategy, an advanced graph denoising autoencoder with deep architecture is developed in a hierarchical manner. To achieve better reconstruction and detection, a greedy layerwise unsupervised pretraining strategy is presented for network training. Experiments show that SGFDAE achieves 97.17%, 98.43%, and 98.90% detection accuracies by averaging the results of the datasets from three different scenes and outperforms the state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Research of stacked denoising sparse autoencoder
    Lingheng Meng
    Shifei Ding
    Nan Zhang
    Jian Zhang
    Neural Computing and Applications, 2018, 30 : 2083 - 2100
  • [22] Multi-Prior Graph Autoencoder with Ranking-Based Band Selection for Hyperspectral Anomaly Detection
    Wang, Nan
    Shi, Yuetian
    Li, Haiwei
    Zhang, Geng
    Li, Siyuan
    Liu, Xuebin
    REMOTE SENSING, 2023, 15 (18)
  • [23] Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder
    Xiong, Yihui
    Zuo, Renguang
    MATHEMATICAL GEOSCIENCES, 2022, 54 (03) : 623 - 644
  • [24] Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder
    Yihui Xiong
    Renguang Zuo
    Mathematical Geosciences, 2022, 54 : 623 - 644
  • [25] Anomaly Detection in Hyperspectral Images via Regularization by Denoising
    Brandao Junior, Mauro Luiz
    Lima, Victor Carneiro
    Pereira Teixeira, Thomas Antonio Portugal
    de Lima, Eduardo Rodrigues
    Lopes, Renato da Rocha
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8256 - 8265
  • [26] Research of stacked denoising sparse autoencoder
    Meng, Lingheng
    Ding, Shifei
    Zhang, Nan
    Zhang, Jian
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (07): : 2083 - 2100
  • [27] Network intrusion detection based on Contractive Sparse Stacked Denoising Autoencoder
    Lu, Jizhao
    Meng, Huiping
    Li, Wencui
    Liu, Yue
    Guo, Yihao
    Yang, Yang
    2021 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2021,
  • [28] 1000 Fps Highly Accurate Eye Detection with Stacked Denoising Autoencoder
    Tang, Wei
    Huang, Yongzhen
    Wang, Liang
    COMPUTER VISION, CCCV 2015, PT II, 2015, 547 : 237 - 246
  • [29] Automatic Arrival Time Detection for Earthquakes Based on Stacked Denoising Autoencoder
    Saad, Omar M.
    Inoue, Koji
    Shalaby, Ahmed
    Samy, Lotfy
    Sayed, Mohammed S.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) : 1687 - 1691
  • [30] Hyperspectral Anomaly Detection by Graph Pixel Selection
    Yuan, Yuan
    Ma, Dandan
    Wang, Qi
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 3123 - 3134