Hyperbolic Space-Based Autoencoder for Hyperspectral Anomaly Detection

被引:4
|
作者
Sun, He [1 ]
Wang, Lizhi [2 ]
Zhang, Lei [2 ]
Gao, Lianru [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[2] Beijing Inst Technol, Sch Comp, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Task analysis; Image reconstruction; Gaussian distribution; Detectors; Anomaly detection; Training; autoencoder (AE); hyperbolic space; hyperspectral image (HSI); LOW-RANK; REPRESENTATION; CLASSIFICATION; SPARSITY; NETWORK;
D O I
10.1109/TGRS.2024.3419075
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep-learning (DL)-based methods have been shown to be effective on the hyperspectral image (HSI) anomaly detection task because of their feature extraction ability. However, current DL-based methods lack an effective means of regularizing the background information. In this article, the hyperbolic space-based autoencoder (HSAE) is proposed for the hyperspectral anomaly detection task. We assume that an effective hierarchical structural representation can better model the HSI in the spatial domain, and this enables the background information to be effectively regularized. Motivated by this idea, the HSAE embeds the HSI into hyperbolic space, which is a non-Euclidean geometry with a constant negative curvature and an exponential growth distance between points. Using a wrapped normal prior distribution, the training of the hidden representation is supervised to preserve more hierarchical features. After the training process, a hyperbolic distance-based anomaly detector (HDB) is introduced to discover anomalies in a more robust way. Experimental results on several popular HSI benchmarks fully demonstrate the superiority of our HSAE.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hyperspectral Anomaly Change Detection Based on Autoencoder
    Hu, Meiqi
    Wu, Chen
    Zhang, Liangpei
    Du, Bo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 3750 - 3762
  • [2] Adversarial autoencoder for hyperspectral anomaly detection
    Du Q.
    Xie W.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1105 - 1114
  • [3] Hyperspectral Anomaly Detection With Guided Autoencoder
    Xiang, Pei
    Ali, Shahzad
    Jung, Soon Ki
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Hyperspectral Anomaly Detection Based on Graph Regularized Variational Autoencoder
    Wei, Jie
    Zhang, Jingfa
    Xu, Yang
    Xu, Lidan
    Wu, Zebin
    Wei, Zhihui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Hyperspectral anomaly detection based on autoencoder and spatial morphology extraction
    Feng, Jing
    Zhang, Liyan
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)
  • [6] ROBUST GRAPH AUTOENCODER FOR HYPERSPECTRAL ANOMALY DETECTION
    Fan, Ganghui
    Ma, Yong
    Huang, Jun
    Mei, Xiaoguang
    Ma, Jiayi
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1830 - 1834
  • [7] Skewed t-Distribution for Hyperspectral Anomaly Detection Based on Autoencoder
    Kayabol, Koray
    Aytekin, Ensar Burak
    Arisoy, Sertac
    Kuruoglu, Ercan Engin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Transformer-Based Autoencoder Framework for Nonlinear Hyperspectral Anomaly Detection
    Wu, Ziyu
    Wang, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [9] Algorithms for space-based anomaly detection of GEO objects
    Xu, Rong
    Zhao, Fei
    ADVANCES IN SPACE RESEARCH, 2019, 64 (02) : 451 - 464
  • [10] HYPERSPECTRAL ANOMALY DETECTION OF HIDDEN CAMOUFLAGE OBJECTS BASED ON CONVOLUTIONAL AUTOENCODER
    Kuester, Jannick
    Gross, Wolfgang
    Middelmann, Wolfgang
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DEFENSE APPLICATIONS III, 2021, 11870