Hyperbolic Space-Based Autoencoder for Hyperspectral Anomaly Detection

被引:4
|
作者
Sun, He [1 ]
Wang, Lizhi [2 ]
Zhang, Lei [2 ]
Gao, Lianru [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[2] Beijing Inst Technol, Sch Comp, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Task analysis; Image reconstruction; Gaussian distribution; Detectors; Anomaly detection; Training; autoencoder (AE); hyperbolic space; hyperspectral image (HSI); LOW-RANK; REPRESENTATION; CLASSIFICATION; SPARSITY; NETWORK;
D O I
10.1109/TGRS.2024.3419075
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep-learning (DL)-based methods have been shown to be effective on the hyperspectral image (HSI) anomaly detection task because of their feature extraction ability. However, current DL-based methods lack an effective means of regularizing the background information. In this article, the hyperbolic space-based autoencoder (HSAE) is proposed for the hyperspectral anomaly detection task. We assume that an effective hierarchical structural representation can better model the HSI in the spatial domain, and this enables the background information to be effectively regularized. Motivated by this idea, the HSAE embeds the HSI into hyperbolic space, which is a non-Euclidean geometry with a constant negative curvature and an exponential growth distance between points. Using a wrapped normal prior distribution, the training of the hidden representation is supervised to preserve more hierarchical features. After the training process, a hyperbolic distance-based anomaly detector (HDB) is introduced to discover anomalies in a more robust way. Experimental results on several popular HSI benchmarks fully demonstrate the superiority of our HSAE.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection
    Mu, Zhenhua
    Wang, Yihan
    Zhang, Yating
    Song, Chuanming
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [22] Convolutional Transformer-Inspired Autoencoder for Hyperspectral Anomaly Detection
    He, Zhi
    He, Dan
    Xiao, Man
    Lou, Anjun
    Lai, Guanglin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [23] A NEW AUTOENCODER TRAINING PARADIGM FOR UNSUPERVISED HYPERSPECTRAL ANOMALY DETECTION
    Merrill, Nicholas
    Olson, Colin C.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3967 - 3970
  • [24] Stacked Graph Fusion Denoising Autoencoder for Hyperspectral Anomaly Detection
    Zhang, Yongshan
    Li, Yijiang
    Wang, Xinxin
    Jiang, Xinwei
    Zhou, Yicong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [25] Weakly supervised video anomaly detection based on hyperbolic space
    Qi, Meilin
    Wu, Yuanyuan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] A SPARSE AUTOENCODER BASED HYPERSPECTRAL ANOMALY DETECTION ALGORIHTM USING RESIDUAL OF RECONSTRUCTION ERROR
    Chang, Shizhen
    Du, Bo
    Zhang, Liangpei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5488 - 5491
  • [27] Autoencoder and Adversarial-Learning-Based Semisupervised Background Estimation for Hyperspectral Anomaly Detection
    Xie, Weiying
    Liu, Baozhu
    Li, Yunsong
    Lei, Jie
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5416 - 5427
  • [28] Color space-based autoencoder for optical camera communications
    Luna-Rivera, J. M.
    Rabadan, J.
    Rufo, J.
    Guerra, V.
    Moreno, D.
    Perez-Jimenez, R.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [29] Band Sampling of Hyperspectral Anomaly Detection in Effective Anomaly Space
    Chang, Chein-I
    Lin, Chien-Yu
    Hu, Peter Fuming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 29
  • [30] Dual-Frequency Autoencoder for Anomaly Detection in Transformed Hyperspectral Imagery
    Liu, Yidan
    Xie, Weiying
    Li, Yunsong
    Li, Zan
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60