LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES

被引:4
|
作者
刘军
杨大春
袁文
机构
[1] LaboratoryofMathematicsandComplexSystems,SchoolofMathematicalSciences,BeijingNormalUniversity
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on R~n. Let HAp,q (R~n) be the anisotropic Hardy-Lorentz spaces associated with A defined via the nontangential grand maximal function. In this article, the authors characterize HAp,q (R~n) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley g*λ-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(R~n). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on R~n. Moreover, the range of λ in the g*λ-function characterization of HAp,q (R~n) coincides with the best known one in the classical Hardy space Hp(R~n) or in the anisotropic Hardy space HAp (R~n).
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [1] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (01) : 1 - 33
  • [2] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES
    刘军
    杨大春
    袁文
    Acta Mathematica Scientia, 2018, (01) : 1 - 33
  • [3] Littlewood-Paley and Finite Atomic Characterizations of Anisotropic Variable Hardy-Lorentz Spaces and Their Applications
    Liu, Jun
    Weisz, Ferenc
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) : 874 - 922
  • [4] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC WEAK MUSIELAK-ORLICZ HARDY SPACES
    Li, Bo
    Sun, Ruirui
    Liao, Minfeng
    Li, Baode
    NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 39 - 78
  • [5] Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type
    Han, Yongsheng
    Mueller, Detlef
    Yang, Dachun
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) : 1505 - 1537
  • [6] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Li, Baode
    Fan, Xingya
    Yang, Dachun
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 279 - 314
  • [7] LITTLEWOOD-PALEY CHARACTERIZATION OF WEIGHTED ANISOTROPIC HARDY SPACES
    Hu, Guorong
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02): : 675 - 700
  • [8] Atomic and Littlewood-Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 1991 - 2067
  • [9] Littlewood–Paley and Finite Atomic Characterizations of Anisotropic Variable Hardy–Lorentz Spaces and Their Applications
    Jun Liu
    Ferenc Weisz
    Dachun Yang
    Wen Yuan
    Journal of Fourier Analysis and Applications, 2019, 25 : 874 - 922
  • [10] Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) : 2611 - 2661