Geometric phase analysis of magnetic skyrmion lattices in Lorentz transmission electron microscopy images

被引:0
|
作者
Denneulin, Thibaud [1 ]
Kovacs, Andras [1 ]
Boltje, Raluca [1 ]
Kiselev, Nikolai S. [2 ,3 ,4 ]
Dunin-Borkowski, Rafal E. [1 ]
机构
[1] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[4] JARA, D-52425 Julich, Germany
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
欧盟地平线“2020”;
关键词
Magnetic skyrmions; Lorentz TEM; Geometric phase analysis; Deformations; STRAIN FIELDS; RESOLUTION; DISPLACEMENT;
D O I
10.1038/s41598-024-62873-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic skyrmions are quasi-particles with a swirling spin texture that form two-dimensional lattices. Skyrmion lattices can exhibit defects in response to geometric constraints, variations of temperature or applied magnetic fields. Measuring deformations in skyrmion lattices is important to understand the interplay between the lattice structure and external influences. Geometric phase analysis (GPA) is a Fourier-based image processing method that is used to measure deformation fields in high resolution transmission electron microscopy (TEM) images of crystalline materials. Here, we show that GPA can be applied quantitatively to Lorentz TEM images of two-dimensional skyrmion lattices obtained from a chiral magnet of FeGe. First, GPA is used to map deformation fields around a 5-7 dislocation and the results are compared with the linear theory of elasticity. Second, rotation angles between skyrmion crystal grains are measured and compared with angles calculated from the density of dislocations. Third, an orientational order parameter and the corresponding correlation function are calculated to describe the evolution of the disorder as a function of applied magnetic field. The influence of sources of artifacts such as geometric distortions and large defoci are also discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] ANALYSIS OF MAGNETIC INDUCTION DISTRIBUTION BY SCANNING LORENTZ INTERFERENCE ELECTRON-MICROSCOPY
    TAKAHASHI, Y
    YAJIMA, Y
    ICHIKAWA, M
    KURODA, K
    IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (06) : 3367 - 3369
  • [42] Fabrication of magnetic ring structures for Lorentz electron microscopy
    Heyderman, L
    Kläui, M
    Schäublin, R
    Rüdiger, U
    Vaz, CAF
    Bland, JAC
    David, C
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 : 86 - 89
  • [44] Lorentz microscopy and electron holography of nanocrystalline magnetic materials
    De Graef, M
    ADVANCED HARD AND SOFT MAGNETIC MATERIALS, 1999, 577 : 519 - 530
  • [45] MAGNETIC INHOMOGENEITIES AND HOLOGRAPHIC METHODS IN ELECTRON LORENTZ MICROSCOPY
    OLIVEI, A
    OPTIK, 1971, 33 (01): : 93 - +
  • [46] Observation of magnetic head fields using distorted transmission electron microscopy images
    Suzuki, H
    Shinada, H
    Yajima, Y
    Kuroda, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1997, 36 (7A): : 4521 - 4524
  • [47] Nanocrystal size distribution analysis from transmission electron microscopy images
    van Sebille, Martijn
    van der Maaten, Laurens J. P.
    Xie, Ling
    Jarolimek, Karol
    Santbergen, Rudi
    van Swaaij, Rene A. C. M. M.
    Leifer, Klaus
    Zeman, Miro
    NANOSCALE, 2015, 7 (48) : 20593 - 20606
  • [48] Digital analysis of high resolution transmission electron microscopy lattice images
    Rosenauer, A
    Kaiser, S
    Reisinger, T
    Zweck, J
    Gebhardt, W
    Gerthsen, D
    OPTIK, 1996, 102 (02): : 63 - 69
  • [49] Digital analysis of high resolution transmission electron microscopy lattice images
    Universitaet Regensburg, Regensburg, Germany
    Optik (Stuttgart), 2 (63-69):
  • [50] Practical and Reproducible Mapping of Strains in Si Devices Using Geometric Phase Analysis of Annular Dark-Field Images From Scanning Transmission Electron Microscopy
    Chung, Jayhoon
    Lian, Guoda
    Rabenberg, Lew
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (08) : 854 - 856