Geometric phase analysis of magnetic skyrmion lattices in Lorentz transmission electron microscopy images

被引:0
|
作者
Denneulin, Thibaud [1 ]
Kovacs, Andras [1 ]
Boltje, Raluca [1 ]
Kiselev, Nikolai S. [2 ,3 ,4 ]
Dunin-Borkowski, Rafal E. [1 ]
机构
[1] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[4] JARA, D-52425 Julich, Germany
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
欧盟地平线“2020”;
关键词
Magnetic skyrmions; Lorentz TEM; Geometric phase analysis; Deformations; STRAIN FIELDS; RESOLUTION; DISPLACEMENT;
D O I
10.1038/s41598-024-62873-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic skyrmions are quasi-particles with a swirling spin texture that form two-dimensional lattices. Skyrmion lattices can exhibit defects in response to geometric constraints, variations of temperature or applied magnetic fields. Measuring deformations in skyrmion lattices is important to understand the interplay between the lattice structure and external influences. Geometric phase analysis (GPA) is a Fourier-based image processing method that is used to measure deformation fields in high resolution transmission electron microscopy (TEM) images of crystalline materials. Here, we show that GPA can be applied quantitatively to Lorentz TEM images of two-dimensional skyrmion lattices obtained from a chiral magnet of FeGe. First, GPA is used to map deformation fields around a 5-7 dislocation and the results are compared with the linear theory of elasticity. Second, rotation angles between skyrmion crystal grains are measured and compared with angles calculated from the density of dislocations. Third, an orientational order parameter and the corresponding correlation function are calculated to describe the evolution of the disorder as a function of applied magnetic field. The influence of sources of artifacts such as geometric distortions and large defoci are also discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Analysis of Virus Textures in Transmission Electron Microscopy Images
    Nanni, Loris
    Paci, Michelangelo
    Caetano Dos Santos, Florentino Luciano
    Brahnam, Sheryl
    Hyttinen, Jari
    INNOVATION IN MEDICINE AND HEALTHCARE 2014, 2014, 207 : 83 - 91
  • [22] Jointed magnetic skyrmion lattices at a small-angle grain boundary directly visualized by advanced electron microscopy
    Takao Matsumoto
    Yeong-Gi So
    Yuji Kohno
    Hidetaka Sawada
    Ryo Ishikawa
    Yuichi Ikuhara
    Naoya Shibata
    Scientific Reports, 6
  • [23] Lorentz transmission electron microscopy of focused ion beam patterned magnetic antidot arrays
    Toporov, AY
    Langford, RM
    Petford-Long, AK
    APPLIED PHYSICS LETTERS, 2000, 77 (19) : 3063 - 3065
  • [24] Tensile deformations of the magnetic chiral soliton lattice probed by Lorentz transmission electron microscopy
    Paterson, G. W.
    Tereshchenko, A. A.
    Nakayama, S.
    Kousaka, Y.
    Kishine, J.
    McVitie, S.
    Ovchinnikov, A. S.
    Proskurin, I
    Togawa, Y.
    PHYSICAL REVIEW B, 2020, 101 (18)
  • [25] Analysis of magnetic microstructure in MRAM bits by electron holography and Lorentz microscopy
    Park, JB
    Park, GS
    Song, IY
    Bae, JS
    Lee, JE
    Yoo, JH
    Murakami, Y
    Shindo, D
    JOURNAL OF ELECTRON MICROSCOPY, 2006, 55 (01): : 17 - 21
  • [26] Operando control of skyrmion density in a Lorentz transmission electron microscope with current pulses
    Park, Albert M.
    Chen, Zhen
    Zhang, Xiyue S.
    Zhu, Lijun
    Muller, David A.
    Fuchs, Gregory D.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (23)
  • [27] Analysis of magnetic induction distribution by scanning Lorentz/interference electron microscopy
    Takahashi, Yoshio
    Yajima, Yusuke
    Ichikawa, Masakazu
    Kuroda, Katsuhiro
    IEEE Transactions on Magnetics, 1995, 31 (6 pt 1): : 3367 - 3369
  • [28] Jointed magnetic skyrmion lattices at a small-angle grain boundary directly visualized by advanced electron microscopy
    Matsumoto, Takao
    So, Yeong-Gi
    Kohno, Yuji
    Sawada, Hidetaka
    Ishikawa, Ryo
    Ikuhara, Yuichi
    Shibata, Naoya
    SCIENTIFIC REPORTS, 2016, 6
  • [29] Aberration corrected Lorentz scanning transmission electron microscopy
    McVitie, S.
    McGrouther, D.
    McFadzean, S.
    MacLaren, D. A.
    O'Shea, K. J.
    Benitez, M. J.
    ULTRAMICROSCOPY, 2015, 152 : 57 - 62
  • [30] Comparison of domain images obtained for nanophase alloys by magnetic force microscopy and high resolution Lorentz electron microscopy
    Univ of Sheffield, Sheffield, United Kingdom
    IEEE Trans Magn, 6 pt 1 (3349-3351):