Displacement smoothness of entropic optimal transport

被引:1
|
作者
Carlier, Guillaume [1 ,2 ]
Chizat, Lenaic [3 ]
Laborde, Maxime [4 ,5 ]
机构
[1] Univ Paris 09, Ceremade, PSL, F-7577 Paris, France
[2] Inria Paris, Mokaplan, France
[3] Ecole Polytech Fed Lausanne EPFL, Inst Math, Stn Z, CH-1015 Lausanne, Switzerland
[4] Univ Paris Cite, F-75005 Paris, France
[5] Sorbonne Univ, CNRS, Lab Jacques Louis Lions LJLL, F-75006 Paris, France
关键词
Entropic optimal transport; Schrodinger map; Wasserstein gradient flows; LOGARITHMIC SOBOLEV INEQUALITIES;
D O I
10.1051/cocv/2024013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The function that maps a family of probability measures to the solution of the dual entropic optimal transport problem is known as the Schr center dot odinger map. We prove that when the cost function is Ck+1 with k is an element of N* then this map is Lipschitz continuous from the L2-Wasserstein space to the space of Ck functions. Our result holds on compact domains and covers the multi-marginal case. We also include regularity results under negative Sobolev metrics weaker than Wasserstein under stronger smoothness assumptions on the cost. As applications, we prove displacement smoothness of the entropic optimal transport cost and the well-posedness of certain Wasserstein gradient flows involving this functional, including the Sinkhorn divergence and a multi-species system.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Entropic transport in energetic potentials
    Burada, P. S.
    Li, Y.
    Riefler, W.
    Schmid, G.
    CHEMICAL PHYSICS, 2010, 375 (2-3) : 514 - 517
  • [42] Enhancement of entropic transport by intermediates
    Mondal, Debasish
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [43] Entropic transport in a crowded medium
    Arango-Restrepo, A.
    Rubi, J. M.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (03):
  • [44] A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature
    Feliciangeli, Dario
    Gerolin, Augusto
    Portinale, Lorenzo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (04)
  • [45] Entropic particle transport in periodic channels
    Burada, P. S.
    Schmid, G.
    Talkner, P.
    Haenggi, P.
    Reguera, D.
    Rubi, J. M.
    BIOSYSTEMS, 2008, 93 (1-2) : 16 - 22
  • [46] Entropic Transport from a Discrete Standpoint
    Wang, Cheng-Yen
    Li, Ping-Cheng
    Chen, Hung-Jung
    Tseng, Hsen-Che
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (05)
  • [47] Entropic transport of finite size particles
    Riefler, W.
    Schmid, G.
    Burada, P. S.
    Haenggi, P.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (45)
  • [48] scEGOT: single-cell trajectory inference framework based on entropic Gaussian mixture optimal transport
    Yachimura, Toshiaki
    Wang, Hanbo
    Imoto, Yusuke
    Yoshida, Momoko
    Tasaki, Sohei
    Kojima, Yoji
    Yabuta, Yukihiro
    Saitou, Mitinori
    Hiraoka, Yasuaki
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [49] Displacement field analysis via optimal transport: Multitracer approach to cosmological reconstruction
    Nikakhtar, Farnik
    Sheth, Ravi K.
    Padmanabhan, Nikhil
    Levy, Bruno
    Mohayaee, Roya
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [50] ENTROPIC AND DISPLACEMENT INTERPOLATION: A COMPUTATIONAL APPROACH USING THE HILBERT METRIC
    Chen, Yongxin
    Georgiou, Tryphon
    Pavon, Michele
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (06) : 2375 - 2396