Displacement smoothness of entropic optimal transport

被引:1
|
作者
Carlier, Guillaume [1 ,2 ]
Chizat, Lenaic [3 ]
Laborde, Maxime [4 ,5 ]
机构
[1] Univ Paris 09, Ceremade, PSL, F-7577 Paris, France
[2] Inria Paris, Mokaplan, France
[3] Ecole Polytech Fed Lausanne EPFL, Inst Math, Stn Z, CH-1015 Lausanne, Switzerland
[4] Univ Paris Cite, F-75005 Paris, France
[5] Sorbonne Univ, CNRS, Lab Jacques Louis Lions LJLL, F-75006 Paris, France
关键词
Entropic optimal transport; Schrodinger map; Wasserstein gradient flows; LOGARITHMIC SOBOLEV INEQUALITIES;
D O I
10.1051/cocv/2024013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The function that maps a family of probability measures to the solution of the dual entropic optimal transport problem is known as the Schr center dot odinger map. We prove that when the cost function is Ck+1 with k is an element of N* then this map is Lipschitz continuous from the L2-Wasserstein space to the space of Ck functions. Our result holds on compact domains and covers the multi-marginal case. We also include regularity results under negative Sobolev metrics weaker than Wasserstein under stronger smoothness assumptions on the cost. As applications, we prove displacement smoothness of the entropic optimal transport cost and the well-posedness of certain Wasserstein gradient flows involving this functional, including the Sinkhorn divergence and a multi-species system.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] FAST ENTROPIC REGULARIZED OPTIMAL TRANSPORT USING SEMIDISCRETE COST APPROXIMATION
    Tenetov, Evgeny
    Wolansky, Gershon
    Kimmel, Ron
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A3400 - A3422
  • [32] On the smoothness of optimal paths
    Joël Blot
    Bertrand Crettez
    Decisions in Economics and Finance, 2004, 27 (1) : 1 - 34
  • [33] Shrinking VOD Traffic via Rényi-Entropic Optimal Transport
    Lo C.-J.
    Marina M.K.
    Sastry N.
    Xu K.
    Fadaei S.
    Li Y.
    Performance Evaluation Review, 2024, 52 (01): : 75 - 76
  • [34] LIMIT DISTRIBUTIONS AND SENSITIVITY ANALYSIS FOR EMPIRICAL ENTROPIC OPTIMAL TRANSPORT ON COUNTABLE SPACES
    Hundrieser, Shayan
    Klatt, Marcel
    Munk, Axel
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (1B): : 1403 - 1468
  • [35] Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport
    Delalande, Alex
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [36] Training Generative Models From Privatized Data via Entropic Optimal Transport
    Reshetova, Daria
    Chen, Wei-Ning
    Ozgur, Ayfer
    IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2024, 5 : 221 - 235
  • [37] Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem
    Mena, Gonzalo
    Niles-Weed, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [38] Relative Entropic Optimal Transport: a (Prior-aware) Matching Perspective to (Unbalanced) Classification
    Shi, Liangliang
    Zhen, Haoyu
    Zhang, Gu
    Yan, Junchi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [39] Logic gates for entropic transport
    Das, Moupriya
    Mondal, Debasish
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2012, 86 (04):
  • [40] Gravity separation by entropic transport
    Zheng, Chunming
    Mei, Dongcheng
    EPL, 2015, 109 (01)