Displacement smoothness of entropic optimal transport

被引:1
|
作者
Carlier, Guillaume [1 ,2 ]
Chizat, Lenaic [3 ]
Laborde, Maxime [4 ,5 ]
机构
[1] Univ Paris 09, Ceremade, PSL, F-7577 Paris, France
[2] Inria Paris, Mokaplan, France
[3] Ecole Polytech Fed Lausanne EPFL, Inst Math, Stn Z, CH-1015 Lausanne, Switzerland
[4] Univ Paris Cite, F-75005 Paris, France
[5] Sorbonne Univ, CNRS, Lab Jacques Louis Lions LJLL, F-75006 Paris, France
关键词
Entropic optimal transport; Schrodinger map; Wasserstein gradient flows; LOGARITHMIC SOBOLEV INEQUALITIES;
D O I
10.1051/cocv/2024013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The function that maps a family of probability measures to the solution of the dual entropic optimal transport problem is known as the Schr center dot odinger map. We prove that when the cost function is Ck+1 with k is an element of N* then this map is Lipschitz continuous from the L2-Wasserstein space to the space of Ck functions. Our result holds on compact domains and covers the multi-marginal case. We also include regularity results under negative Sobolev metrics weaker than Wasserstein under stronger smoothness assumptions on the cost. As applications, we prove displacement smoothness of the entropic optimal transport cost and the well-posedness of certain Wasserstein gradient flows involving this functional, including the Sinkhorn divergence and a multi-species system.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] ON THE DIFFERENCE BETWEEN ENTROPIC COST AND THE OPTIMAL TRANSPORT COST
    Pal, Soumik
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (1B): : 1003 - 1028
  • [22] Entropic optimal transport is maximum-likelihood deconvolution
    Rigollet, Philippe
    Weed, Jonathan
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (11-12) : 1228 - 1235
  • [23] Limit theorems for entropic optimal transport maps and Sinkhorn divergence
    Goldfeld, Ziv
    Kato, Kengo
    Rioux, Gabriel
    Sadhu, Ritwik
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 980 - 1041
  • [24] Improved Rate of First Order Algorithms for Entropic Optimal Transport
    Luo, Yiling
    Xie, Yiling
    Huo, Xiaoming
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [25] Building the Bridge of Schrodinger: A Continuous Entropic Optimal Transport Benchmark
    Gushchin, Nikita
    Kolesov, Alexander
    Mokrov, Petr
    Karpikova, Polina
    Spiridonov, Andrey
    Burnaev, Evgeny
    Korotin, Alexander
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] Entropic model predictive optimal transport over dynamical systems?
    Ito, Kaito
    Kashima, Kenji
    AUTOMATICA, 2023, 152
  • [27] Quantum entropic regularization of matrix-valued optimal transport
    Peyre, Gabriel
    Chizat, Lenaic
    Vialard, Francois-Xavier
    Solomon, Justin
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (06) : 1079 - 1102
  • [28] Entropic Model Predictive Optimal Transport for Underactuated Linear Systems
    Ito, Kaito
    Kashima, Kenji
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2761 - 2766
  • [29] Stability results on the smoothness of optimal transport maps with general costs
    Chen, Shibing
    Figalli, Alessio
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (02): : 280 - 295
  • [30] Shrinking VOD Traffic via Renyi-Entropic Optimal Transport
    Lo, Chi-Jen
    Marina, Mahesh K.
    Sastry, Nishanth
    Xu, Kai
    Fadaei, Saeed
    Li, Yong
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2024, 8 (01)