Identification of Parkinson's disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data

被引:4
|
作者
Su, Chang [1 ,2 ]
Hou, Yu [3 ]
Xu, Jielin [4 ]
Xu, Zhenxing [1 ,2 ]
Zhou, Manqi [2 ,5 ]
Ke, Alison [2 ,5 ]
Li, Haoyang [1 ,2 ]
Xu, Jie [6 ]
Brendel, Matthew [7 ]
Maasch, Jacqueline R. M. A. [2 ,8 ]
Bai, Zilong [1 ,2 ]
Zhang, Haotan [9 ]
Zhu, Yingying [10 ]
Cincotta, Molly C. [11 ]
Shi, Xinghua [12 ]
Henchcliffe, Claire [13 ]
Leverenz, James B. [14 ]
Cummings, Jeffrey [15 ]
Okun, Michael S. [16 ]
Bian, Jiang [6 ]
Cheng, Feixiong [4 ,17 ]
Wang, Fei [1 ,2 ]
机构
[1] Cornell Univ, Dept Populat Hlth Sci, Weill Cornell Med, New York, NY 14850 USA
[2] Cornell Univ, Inst Artificial Intelligence Digital Hlth, Weill Cornell Med, New York, NY 14850 USA
[3] Univ Minnesota, Dept Surg, Minneapolis, MN USA
[4] Cleveland Clin, Genom Med Inst, Lerner Res Inst, Cleveland, OH USA
[5] Cornell Univ, Dept Computat Biol, Ithaca, NY USA
[6] Univ Florida, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[7] Weill Cornell Med, Dept Physiol & Biophys, Inst Computat Biomed, New York, NY USA
[8] Cornell Univ, Dept Comp Sci, Cornell Tech, New York, NY USA
[9] Weill Cornell Med, Dept Physiol & Biophys, New York, NY USA
[10] Univ Texas Arlington, Dept Comp Sci, Arlington, TX USA
[11] Temple Univ, Lewis Katz Sch Med, Philadelphia, PA USA
[12] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA USA
[13] Univ Calif Irvine, Dept Neurol, Irvine, CA USA
[14] Cleveland Clin, Neurol Inst, Lou Ruvo Ctr Brain Hlth, Cleveland, OH USA
[15] Univ Nevada, Chambers Grundy Ctr Transformat Neurosci, Sch Integrated Hlth Sci, Dept Brain Hlth, Las Vegas, NV USA
[16] Univ Florida, Fixel Inst Neurol Dis, Dept Neurol, Gainesville, FL USA
[17] Case Western Reserve Univ, Lerner Coll Med, Dept Mol Med, Cleveland Clin, Cleveland, OH USA
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; SIGNALING PATHWAYS; CSF BIOMARKERS; MOTOR SUBTYPE; METFORMIN; PROGRESSION; NETWORK; BRAIN; DISORDERS; DISCOVERY;
D O I
10.1038/s41746-024-01175-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (>= 5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom progression rate. We found cerebrospinal fluid P-tau/alpha-synuclein ratio and atrophy in certain brain regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with network-based approaches identified molecular modules associated with each subtype. For instance, the PD-R-specific module suggested STAT3, FYN, BECN1, APOA1, NEDD4, and GATA2 as potential driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT, and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we identified repurposable drug candidates by targeting these subtype-specific molecular modules using network-based approach and cell line drug-gene signature data. We further estimated their treatment effects using two large-scale real-world patient databases; the real-world evidence we gained highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps better understand clinical and pathophysiological complexity of PD progression and accelerate precision medicine.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts
    Anant Dadu
    Vipul Satone
    Rachneet Kaur
    Sayed Hadi Hashemi
    Hampton Leonard
    Hirotaka Iwaki
    Mary B. Makarious
    Kimberley J. Billingsley
    Sara Bandres‐Ciga
    Lana J. Sargent
    Alastair J. Noyce
    Ali Daneshmand
    Cornelis Blauwendraat
    Ken Marek
    Sonja W. Scholz
    Andrew B. Singleton
    Mike A. Nalls
    Roy H. Campbell
    Faraz Faghri
    npj Parkinson's Disease, 8
  • [42] Feature selection and machine learning methods for optimal identification and prediction of subtypes in Parkinson's disease
    Salmanpour, R. Mohammad
    Shamsaei, Mojtaba
    Rahmim, Arman
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 206
  • [43] Identification and prediction of Parkinson's disease subtypes and progression using machine learning in two cohorts
    Dadu, Anant
    Satone, Vipul
    Kaur, Rachneet
    Hashemi, Sayed Hadi
    Leonard, Hampton
    Iwaki, Hirotaka
    Makarious, Mary B.
    Billingsley, Kimberley J.
    Bandres-Ciga, Sara
    Sargent, Lana J.
    Noyce, Alastair J.
    Daneshmand, Ali
    Blauwendraat, Cornelis
    Marek, Ken
    Scholz, Sonja W.
    Singleton, Andrew B.
    Nalls, Mike A.
    Campbell, Roy H.
    Faghri, Faraz
    NPJ PARKINSONS DISEASE, 2022, 8 (01)
  • [44] Identification of Parkinson's disease and multiple system atrophy using multimodal PET/MRI radiomics
    Sun, Jinju
    Cong, Chao
    Li, Xinpeng
    Zhou, Weicheng
    Xia, Renxiang
    Liu, Huan
    Wang, Yi
    Xu, Zhiqiang
    Chen, Xiao
    EUROPEAN RADIOLOGY, 2024, 34 (01) : 662 - 672
  • [45] Identification of Parkinson’s disease and multiple system atrophy using multimodal PET/MRI radiomics
    Jinju Sun
    Chao Cong
    Xinpeng Li
    Weicheng Zhou
    Renxiang Xia
    Huan Liu
    Yi Wang
    Zhiqiang Xu
    Xiao Chen
    European Radiology, 2024, 34 : 662 - 672
  • [46] Data-driven identification of distinct fronto-subcortical and cortical-posterior subtypes of cognitive decline in Parkinson's disease
    Grothe, M.
    Labrador-Espinosa, M.
    Jesus, S.
    Roldan, F.
    Barbera, M. Aguilar
    Pastor, P.
    Arroyo, S. Escalante
    Vila, B. Solano
    Foraster, A. Cots
    Martinez, J. Ruiz
    Padilla, F. Carrillo
    Morlans, M. Pueyo
    Aramburu, I. Gonzalez
    Ceberio, J. Infante
    Vara, J. Hernandez
    De Fabregues-Boixar, O.
    Fonticoba, T. Deus
    Pascual-Sedano, B.
    Coppadis, S. G.
    Martinez-Martin, P.
    Kulisevsky, J.
    Santos-Garcia, D.
    Mir, P.
    MOVEMENT DISORDERS, 2022, 37 : S536 - S537
  • [47] Identifying and predicting Parkinson's disease subtypes through trajectory clustering via bipartite networks
    Krishnagopal, Sanjukta
    von Coelln, Rainer
    Shulman, Lisa M.
    Girvan, Michelle
    PLOS ONE, 2020, 15 (06):
  • [48] Uncovering Non-Motor Subtypes in Parkinson's disease (PD) through Machine Learning
    Pinilla-Monsalve, G.
    Song, Y.
    Young, A.
    Hanganu, A.
    Monchi, O.
    MOVEMENT DISORDERS, 2024, 39 : S172 - S172
  • [49] Identification of transcriptional subtypes in lung adenocarcinoma and squamous cell carcinoma through integrative analysis of microarray and RNA sequencing data
    François Fauteux
    Anuradha Surendra
    Scott McComb
    Youlian Pan
    Jennifer J. Hill
    Scientific Reports, 11
  • [50] Identification of transcriptional subtypes in lung adenocarcinoma and squamous cell carcinoma through integrative analysis of microarray and RNA sequencing data
    Fauteux, Francois
    Surendra, Anuradha
    McComb, Scott
    Pan, Youlian
    Hill, Jennifer J.
    SCIENTIFIC REPORTS, 2021, 11 (01)