Identification of Parkinson's disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data

被引:4
|
作者
Su, Chang [1 ,2 ]
Hou, Yu [3 ]
Xu, Jielin [4 ]
Xu, Zhenxing [1 ,2 ]
Zhou, Manqi [2 ,5 ]
Ke, Alison [2 ,5 ]
Li, Haoyang [1 ,2 ]
Xu, Jie [6 ]
Brendel, Matthew [7 ]
Maasch, Jacqueline R. M. A. [2 ,8 ]
Bai, Zilong [1 ,2 ]
Zhang, Haotan [9 ]
Zhu, Yingying [10 ]
Cincotta, Molly C. [11 ]
Shi, Xinghua [12 ]
Henchcliffe, Claire [13 ]
Leverenz, James B. [14 ]
Cummings, Jeffrey [15 ]
Okun, Michael S. [16 ]
Bian, Jiang [6 ]
Cheng, Feixiong [4 ,17 ]
Wang, Fei [1 ,2 ]
机构
[1] Cornell Univ, Dept Populat Hlth Sci, Weill Cornell Med, New York, NY 14850 USA
[2] Cornell Univ, Inst Artificial Intelligence Digital Hlth, Weill Cornell Med, New York, NY 14850 USA
[3] Univ Minnesota, Dept Surg, Minneapolis, MN USA
[4] Cleveland Clin, Genom Med Inst, Lerner Res Inst, Cleveland, OH USA
[5] Cornell Univ, Dept Computat Biol, Ithaca, NY USA
[6] Univ Florida, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[7] Weill Cornell Med, Dept Physiol & Biophys, Inst Computat Biomed, New York, NY USA
[8] Cornell Univ, Dept Comp Sci, Cornell Tech, New York, NY USA
[9] Weill Cornell Med, Dept Physiol & Biophys, New York, NY USA
[10] Univ Texas Arlington, Dept Comp Sci, Arlington, TX USA
[11] Temple Univ, Lewis Katz Sch Med, Philadelphia, PA USA
[12] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA USA
[13] Univ Calif Irvine, Dept Neurol, Irvine, CA USA
[14] Cleveland Clin, Neurol Inst, Lou Ruvo Ctr Brain Hlth, Cleveland, OH USA
[15] Univ Nevada, Chambers Grundy Ctr Transformat Neurosci, Sch Integrated Hlth Sci, Dept Brain Hlth, Las Vegas, NV USA
[16] Univ Florida, Fixel Inst Neurol Dis, Dept Neurol, Gainesville, FL USA
[17] Case Western Reserve Univ, Lerner Coll Med, Dept Mol Med, Cleveland Clin, Cleveland, OH USA
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; SIGNALING PATHWAYS; CSF BIOMARKERS; MOTOR SUBTYPE; METFORMIN; PROGRESSION; NETWORK; BRAIN; DISORDERS; DISCOVERY;
D O I
10.1038/s41746-024-01175-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (>= 5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom progression rate. We found cerebrospinal fluid P-tau/alpha-synuclein ratio and atrophy in certain brain regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with network-based approaches identified molecular modules associated with each subtype. For instance, the PD-R-specific module suggested STAT3, FYN, BECN1, APOA1, NEDD4, and GATA2 as potential driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT, and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we identified repurposable drug candidates by targeting these subtype-specific molecular modules using network-based approach and cell line drug-gene signature data. We further estimated their treatment effects using two large-scale real-world patient databases; the real-world evidence we gained highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps better understand clinical and pathophysiological complexity of PD progression and accelerate precision medicine.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Reliability of administrative data for the identification of Parkinson's disease cohorts
    Baldacci, Filippo
    Policardo, Laura
    Rossi, Simone
    Ulivelli, Monica
    Ramat, Silvia
    Grassi, Enrico
    Palumbo, Pasquale
    Giovannelli, Fabio
    Cincotta, Massimo
    Ceravolo, Roberto
    Sorbi, Sandro
    Francesconi, Paolo
    Bonuccelli, Ubaldo
    NEUROLOGICAL SCIENCES, 2015, 36 (05) : 783 - 786
  • [32] Identification of gut metabolites associated with Parkinson's disease using bioinformatic analyses
    Yan, Jun
    Feng, Xia
    Zhou, Xia
    Zhao, Mengjie
    Xiao, Hong
    Li, Rui
    Shen, Hong
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [33] Multimodal Education in Advanced Parkinson's Disease Significantly Improves Identification and Treatment Decisions
    Rohani-Montez, S.
    Fairley, L.
    Vuurman, M.
    Antonini, A.
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 : 597 - 598
  • [34] Uncovering neuroinflammation-related modules and potential repurposing drugs for Alzheimer's disease through multi-omics data integrative analysis
    Li, Shensuo
    Lu, Changhao
    Zhao, Zhenzhen
    Lu, Dong
    Zheng, Guangyong
    FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
  • [35] Longitudinal follow up of data-driven cognitive subtypes in Parkinson's disease
    Pourzinal, Dana
    Yang, Jihyun
    Sivakumaran, Kumareshan
    McMahon, Katie L.
    Mitchell, Leander
    O'Sullivan, John D.
    Byrne, Gerard J.
    Dissanayaka, Nadeeka N.
    BRAIN AND BEHAVIOR, 2023, 13 (10):
  • [36] Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson's disease
    Glaab, Enrico
    Trezzi, Jean-Pierre
    Greuel, Andrea
    Jaeger, Christian
    Hodak, Zdenka
    Drzezga, Alexander
    Timmermann, Lars
    Tittgemeyer, Marc
    Diederich, Nico Jean
    Eggers, Carsten
    NEUROBIOLOGY OF DISEASE, 2019, 124 : 555 - 562
  • [37] Enhancing Parkinson's Disease Recognition through Multimodal Analysis of Archimedean Spiral Drawings
    Jenei, Attila Zoltan
    Sztaho, David
    Valalik, Istvan stvan
    INFOCOMMUNICATIONS JOURNAL, 2024, 16 (01): : 64 - 71
  • [38] Identification of hub genes of Parkinson's disease through bioinformatics analysis
    Yang, Yajun
    Wang, Yi
    Wang, Ce
    Xu, Xinjuan
    Liu, Cai
    Huang, Xintao
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [39] Parkinson's disease Identification Through Optimum-Path Forest
    Spadoto, Andre A.
    Guido, Rodrigo C.
    Papa, Joao P.
    Falcao, Alexandre X.
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 6087 - 6090
  • [40] Data on the effect of Parkinson's disease multimodal complex treatment in a German University Hospital
    Heimrich, Konstantin G.
    Prell, Tino
    DATA IN BRIEF, 2022, 44