Identification of Parkinson's disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data

被引:4
|
作者
Su, Chang [1 ,2 ]
Hou, Yu [3 ]
Xu, Jielin [4 ]
Xu, Zhenxing [1 ,2 ]
Zhou, Manqi [2 ,5 ]
Ke, Alison [2 ,5 ]
Li, Haoyang [1 ,2 ]
Xu, Jie [6 ]
Brendel, Matthew [7 ]
Maasch, Jacqueline R. M. A. [2 ,8 ]
Bai, Zilong [1 ,2 ]
Zhang, Haotan [9 ]
Zhu, Yingying [10 ]
Cincotta, Molly C. [11 ]
Shi, Xinghua [12 ]
Henchcliffe, Claire [13 ]
Leverenz, James B. [14 ]
Cummings, Jeffrey [15 ]
Okun, Michael S. [16 ]
Bian, Jiang [6 ]
Cheng, Feixiong [4 ,17 ]
Wang, Fei [1 ,2 ]
机构
[1] Cornell Univ, Dept Populat Hlth Sci, Weill Cornell Med, New York, NY 14850 USA
[2] Cornell Univ, Inst Artificial Intelligence Digital Hlth, Weill Cornell Med, New York, NY 14850 USA
[3] Univ Minnesota, Dept Surg, Minneapolis, MN USA
[4] Cleveland Clin, Genom Med Inst, Lerner Res Inst, Cleveland, OH USA
[5] Cornell Univ, Dept Computat Biol, Ithaca, NY USA
[6] Univ Florida, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[7] Weill Cornell Med, Dept Physiol & Biophys, Inst Computat Biomed, New York, NY USA
[8] Cornell Univ, Dept Comp Sci, Cornell Tech, New York, NY USA
[9] Weill Cornell Med, Dept Physiol & Biophys, New York, NY USA
[10] Univ Texas Arlington, Dept Comp Sci, Arlington, TX USA
[11] Temple Univ, Lewis Katz Sch Med, Philadelphia, PA USA
[12] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA USA
[13] Univ Calif Irvine, Dept Neurol, Irvine, CA USA
[14] Cleveland Clin, Neurol Inst, Lou Ruvo Ctr Brain Hlth, Cleveland, OH USA
[15] Univ Nevada, Chambers Grundy Ctr Transformat Neurosci, Sch Integrated Hlth Sci, Dept Brain Hlth, Las Vegas, NV USA
[16] Univ Florida, Fixel Inst Neurol Dis, Dept Neurol, Gainesville, FL USA
[17] Case Western Reserve Univ, Lerner Coll Med, Dept Mol Med, Cleveland Clin, Cleveland, OH USA
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; SIGNALING PATHWAYS; CSF BIOMARKERS; MOTOR SUBTYPE; METFORMIN; PROGRESSION; NETWORK; BRAIN; DISORDERS; DISCOVERY;
D O I
10.1038/s41746-024-01175-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (>= 5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom progression rate. We found cerebrospinal fluid P-tau/alpha-synuclein ratio and atrophy in certain brain regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with network-based approaches identified molecular modules associated with each subtype. For instance, the PD-R-specific module suggested STAT3, FYN, BECN1, APOA1, NEDD4, and GATA2 as potential driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT, and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we identified repurposable drug candidates by targeting these subtype-specific molecular modules using network-based approach and cell line drug-gene signature data. We further estimated their treatment effects using two large-scale real-world patient databases; the real-world evidence we gained highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps better understand clinical and pathophysiological complexity of PD progression and accelerate precision medicine.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Reproducibility of data-driven Parkinson's disease subtypes for clinical research
    Mestre, Tiago A.
    Eberly, Shirley
    Tanner, Caroline
    Grimes, David
    Lang, Anthony E.
    Oakes, David
    Marras, Connie
    PARKINSONISM & RELATED DISORDERS, 2018, 56 : 102 - 106
  • [22] Reply to "Studying reproducibility of data-driven Parkinson's disease subtypes"
    Mestre, Tiago A.
    Eberly, Shirley
    Tanner, Caroline
    Grimes, David
    Lang, Anthony E.
    Oakes, David
    Marras, Connie
    PARKINSONISM & RELATED DISORDERS, 2019, 66 : 245 - 246
  • [23] Association Analyses of Autonomic Dysfunction and Sympathetic Skin Response in Motor Subtypes of Parkinson's Disease
    Wang, Jian-Yong
    Wang, Meng-Yan
    Liu, Rong-Pei
    Li, Yan
    Zhang, Wen-Yuan
    Ovlyakulov, Begench
    Zhang, Xiong
    Zhu, Jian-Hong
    FRONTIERS IN NEUROLOGY, 2020, 11
  • [24] Multimodal data fusion reveals functional and neurochemical correlates of Parkinson's disease
    Shi, Dafa
    Wu, Shuohua
    Zhuang, Caiyu
    Mao, Yumeng
    Wang, Qianqi
    Zhai, Huige
    Zhao, Nannan
    Yan, Gen
    Wu, Renhua
    NEUROBIOLOGY OF DISEASE, 2024, 197
  • [25] Predicting Parkinson's Disease with Multimodal Irregularly Collected Longitudinal Smartphone Data
    Li, Weijian
    Zhu, Wei
    Dorsey, E. Ray
    Luo, Jiebo
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1106 - 1111
  • [26] Hybrid Machine Learning Methods and Ensemble Voting for Identification of Parkinson's Disease Subtypes
    Salmanpour, Mohammad R.
    Saberi, Abdollah
    Hajianfar, Ghasem
    Rahmim, Arman
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [27] Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning
    Salmanpour, Mohammad R.
    Shamsaei, Mojtaba
    Saberi, Abdollah
    Hajianfar, Ghasem
    Soltanian-Zadeh, Hamid
    Rahmim, Arman
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 129
  • [28] Identification of lncRNA biomarkers for lung cancer through integrative cross-platform data analyses
    Zhao, Tianying
    Khadka, Vedbar Singh
    Deng, Youping
    AGING-US, 2020, 12 (14): : 14506 - 14527
  • [29] Reliability of administrative data for the identification of Parkinson’s disease cohorts
    Filippo Baldacci
    Laura Policardo
    Simone Rossi
    Monica Ulivelli
    Silvia Ramat
    Enrico Grassi
    Pasquale Palumbo
    Fabio Giovannelli
    Massimo Cincotta
    Roberto Ceravolo
    Sandro Sorbi
    Paolo Francesconi
    Ubaldo Bonuccelli
    Neurological Sciences, 2015, 36 : 783 - 786
  • [30] The relationship between environmental factors and different Parkinson's disease subtypes in Greece: Data analysis of the Hellenic Biobank of Parkinson's disease
    Angelopoulou, Efthalia
    Bozi, Maria
    Simitsi, Athina-Maria
    Koros, Christos
    Antonelou, Roubina
    Papagiannakis, Nikolaos
    Maniati, Matina
    Poula, Dafni
    Stamelou, Maria
    Vassilatis, Demetrios K.
    Michalopoulos, Ioannis
    Geronikolou, Styliani
    Scarmeas, Nikolaos
    Stefanis, Leonidas
    PARKINSONISM & RELATED DISORDERS, 2019, 67 : 105 - 112