Determining Hypercentral Hall Subgroups in Finite Groups

被引:0
|
作者
Sotomayor, V. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
关键词
Finite groups; Conjugacy classes; Hypercentral subgroups; Hall subgroups; INFORMATION;
D O I
10.1007/s40840-024-01752-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, and let pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} be a set of primes. The aim of this paper is to obtain some results concerning how much information about the pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-structure of G can be gathered from the knowledge of the sizes of conjugacy classes of its pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-elements and of their multiplicities. Among other results, we prove that this multiset of class sizes determines whether G has a hypercentral Hall pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-subgroup.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] On hall subnormally embedded subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Cossey, John
    Qiao, ShouHong
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (04): : 753 - 760
  • [42] Finite groups with Hall normally embedded subgroups
    Guo, Qinghong
    He, Xuanli
    Huang, Muhong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (09)
  • [43] A conjugacy criterion for Hall subgroups in finite groups
    E. P. Vdovin
    D. O. Revin
    Siberian Mathematical Journal, 2010, 51 : 402 - 409
  • [44] Hypercentral groups with all subgroups subnormal III
    Smith, H
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 591 - 598
  • [45] On intersections of solvable Hall subgroups in finite nonsolvable groups
    Zenkov V.I.
    Proceedings of the Steklov Institute of Mathematics, 2007, 259 (Suppl 2) : S250 - S253
  • [46] A note on Hall normally embedded subgroups of finite groups
    He, Xuanli
    Sun, Qinhui
    Guo, Qinghong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (05)
  • [47] On finite groups with Hall normally embedded Schmidt subgroups
    Kniahina, Viktoryia N.
    Monakhov, Victor S.
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 90 - 96
  • [48] Finite groups with hall subnormally embedded Schmidt subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 93 - 100
  • [49] On One Property of Normal Hall Subgroups of Finite Groups
    X. Yi
    B. Cheng
    R. V. Borodich
    S. F. Kamornikov
    Siberian Mathematical Journal, 2025, 66 (2) : 291 - 297
  • [50] On finite groups with some Hall normally embedded subgroups
    Meng, Wei
    Lu, Jiakuan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,