Determining Hypercentral Hall Subgroups in Finite Groups

被引:0
|
作者
Sotomayor, V. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
关键词
Finite groups; Conjugacy classes; Hypercentral subgroups; Hall subgroups; INFORMATION;
D O I
10.1007/s40840-024-01752-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, and let pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} be a set of primes. The aim of this paper is to obtain some results concerning how much information about the pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-structure of G can be gathered from the knowledge of the sizes of conjugacy classes of its pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-elements and of their multiplicities. Among other results, we prove that this multiset of class sizes determines whether G has a hypercentral Hall pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-subgroup.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Finite groups with Hall supplements to primitive subgroups
    V. S. Monakhov
    Siberian Mathematical Journal, 2007, 48 : 288 - 294
  • [32] FORMATIONS AND HALL SUBGROUPS OF FINITE SOLUBLE GROUPS
    BLESSENOHL, D
    MATHEMATISCHE ZEITSCHRIFT, 1975, 142 (03) : 299 - 300
  • [33] ON INTERSECTIONS OF π-HALL SUBGROUPS IN FINITE Dπ-GROUPS
    Zenkov, V., I
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (04) : 720 - 722
  • [34] On hall subnormally embedded subgroups of finite groups
    Adolfo Ballester-Bolinches
    John Cossey
    ShouHong Qiao
    Monatshefte für Mathematik, 2016, 181 : 753 - 760
  • [35] An existence criterion for Hall subgroups of finite groups
    Revin, Danila O.
    Vdovin, Evgeny P.
    JOURNAL OF GROUP THEORY, 2011, 14 (01) : 93 - 101
  • [36] PRONORMALITY OF HALL SUBGROUPS IN FINITE SIMPLE GROUPS
    Vdovin, E. P.
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (03) : 419 - 430
  • [37] Finite groups with Hall supplements to primitive subgroups
    Monakhov, V. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (02) : 288 - 294
  • [38] ON HALL NORMALLY EMBEDDED SUBGROUPS OF FINITE GROUPS
    Li, Shirong
    He, Jun
    Nong, Guoping
    Zhou, Longqiao
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (09) : 3360 - 3367
  • [39] NILPOTENT AND ABELIAN HALL SUBGROUPS IN FINITE GROUPS
    Beltran, Antonio
    Jose Felipe, Maria
    Malle, Gunter
    Moreto, Alexander
    Navarro, Gabriel
    Sanus, Lucia
    Solomon, Ronald
    Tiep, Pham Huu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2497 - 2513
  • [40] Hall subgroups of odd order in finite groups
    Vdovin E.P.
    Revin D.O.
    Algebra and Logic, 2002, 41 (1) : 8 - 29