Finite groups with hall subnormally embedded Schmidt subgroups

被引:2
|
作者
Monakhov, Victor S. [1 ]
Kniahina, Viktoryia N. [2 ]
机构
[1] Gomel F Scorina State Univ, Dept Algebra & Geometry, Gomel, BELARUS
[2] Gomel F Scorina State Univ, Dept Fundamental & Appl Math, Gomel, BELARUS
关键词
Derived subgroup; finite group; hall subgroup; nilpotent subgroup; subnormal subgroup;
D O I
10.1080/00927872.2019.1632332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [1] Finite groups with Hall subnormally embedded Schmidt subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 668 - 675
  • [2] On hall subnormally embedded subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Cossey, John
    Qiao, ShouHong
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (04): : 753 - 760
  • [3] On hall subnormally embedded subgroups of finite groups
    Adolfo Ballester-Bolinches
    John Cossey
    ShouHong Qiao
    Monatshefte für Mathematik, 2016, 181 : 753 - 760
  • [4] On finite groups with Hall normally embedded Schmidt subgroups
    Kniahina, Viktoryia N.
    Monakhov, Victor S.
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 90 - 96
  • [5] Finite groups with hall Schmidt subgroups
    Kniahina, V. N.
    Monakhov, V. S.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 341 - 350
  • [6] Finite groups with Hall Schmidt subgroups
    Bazhanova, E. N.
    Vedernikov, V. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (03): : 3 - 11
  • [7] On Hall embedded subgroups of finite groups
    Monakhov, Victor
    Kniahina, Viktoryia
    JOURNAL OF GROUP THEORY, 2015, 18 (04) : 565 - 568
  • [8] On Hall subnormally embedded and generalized nilpotent groups
    Li, Shirong
    Liu, Jianjun
    JOURNAL OF ALGEBRA, 2013, 388 : 1 - 9
  • [9] ON HALL NORMALLY EMBEDDED SUBGROUPS OF FINITE GROUPS
    Li, Shirong
    He, Jun
    Nong, Guoping
    Zhou, Longqiao
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (09) : 3360 - 3367
  • [10] Finite groups with Hall normally embedded subgroups
    Guo, Qinghong
    He, Xuanli
    Huang, Muhong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (09)