Finite groups with hall subnormally embedded Schmidt subgroups

被引:2
|
作者
Monakhov, Victor S. [1 ]
Kniahina, Viktoryia N. [2 ]
机构
[1] Gomel F Scorina State Univ, Dept Algebra & Geometry, Gomel, BELARUS
[2] Gomel F Scorina State Univ, Dept Fundamental & Appl Math, Gomel, BELARUS
关键词
Derived subgroup; finite group; hall subgroup; nilpotent subgroup; subnormal subgroup;
D O I
10.1080/00927872.2019.1632332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [31] On Existence of Hall Subgroups in Finite Groups
    Liu, Yufeng
    Gno, Wenbin
    Skiba, A. N.
    ALGEBRA COLLOQUIUM, 2017, 24 (01) : 75 - 82
  • [32] Finite groups with permutable Hall subgroups
    Yin, Xia
    Yang, Nanying
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (05) : 1265 - 1275
  • [33] Computing Hall subgroups of finite groups
    Eick, Bettina
    Hulpke, Alexander
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2012, 15 : 205 - 218
  • [34] Finite groups with nilpotent and Hall subgroups
    Knyagina, V. N.
    Monakhov, V. S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2013, 23 (02): : 175 - 182
  • [35] Finite groups with biprimary Hall subgroups
    Tyutyanov, Valentin N.
    Kniahina, Viktoryia N.
    JOURNAL OF ALGEBRA, 2015, 443 : 430 - 440
  • [36] Finite groups with permutable Hall subgroups
    Xia Yin
    Nanying Yang
    Frontiers of Mathematics in China, 2017, 12 : 1265 - 1275
  • [37] Finite groups with 2-minimal or 2-maximal subgroups are Hall normally embedded subgroups
    He, Xuanli
    Wang, Jing
    Guo, Qinghong
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (12) : 5359 - 5368
  • [38] Finite groups with systems of Σ-embedded subgroups
    WenBin Guo
    Alexander N. Skiba
    Science China Mathematics, 2011, 54 : 1909 - 1926
  • [39] On σ-Permutably Embedded Subgroups of Finite Groups
    Chenchen Cao
    Li Zhang
    Wenbin Guo
    Czechoslovak Mathematical Journal, 2019, 69 : 11 - 24
  • [40] On σ-Permutably Embedded Subgroups of Finite Groups
    Cao, Chenchen
    Zhang, Li
    Guo, Wenbin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (01) : 11 - 24