Determining Hypercentral Hall Subgroups in Finite Groups

被引:0
|
作者
Sotomayor, V. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
关键词
Finite groups; Conjugacy classes; Hypercentral subgroups; Hall subgroups; INFORMATION;
D O I
10.1007/s40840-024-01752-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, and let pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} be a set of primes. The aim of this paper is to obtain some results concerning how much information about the pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-structure of G can be gathered from the knowledge of the sizes of conjugacy classes of its pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-elements and of their multiplicities. Among other results, we prove that this multiset of class sizes determines whether G has a hypercentral Hall pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-subgroup.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On subgroups of hypercentral type of finite groups
    Ballester-Bolinches, A.
    Ezquerro, Luis M.
    Skiba, Alexander N.
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) : 259 - 265
  • [2] On FΦ*-hypercentral subgroups of finite groups
    Guo, Wenbin
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA, 2012, 372 : 275 - 292
  • [3] WEAKLY HYPERCENTRAL SUBGROUPS OF FINITE GROUPS
    DYKES, DC
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) : 337 - &
  • [4] HYPERCENTRAL SUBGROUPS OF FINITE-GROUPS
    PENG, TA
    JOURNAL OF ALGEBRA, 1982, 78 (02) : 431 - 436
  • [5] On subgroups of hypercentral type of finite groups
    A. Ballester-Bolinches
    Luis M. Ezquerro
    Alexander N. Skiba
    Israel Journal of Mathematics, 2014, 199 : 259 - 265
  • [6] On the φ-hypercentral subgroups of finite groups1
    Bao, Hongwei
    Miao, Long
    Shi, Huaguo
    Zhang, Jia
    QUAESTIONES MATHEMATICAE, 2020, 43 (01) : 35 - 44
  • [7] On indecomposable groups and groups with hypercentral-by-finite proper subgroups
    Artemovych, OD
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (1-2): : 163 - 175
  • [8] GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK ARE FINITE-BY- HYPERCENTRAL OR HYPERCENTRAL-BY-FINITE
    Dilmi, A.
    Trabelsi, N.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (02) : 492 - 500
  • [9] GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK ARE FINITE-BY-HYPERCENTRAL OR HYPERCENTRAL-BY-FINITE
    A. DILMI
    N. TRABELSI
    Acta Mathematica Hungarica, 2022, 167 : 492 - 500
  • [10] Hall subgroups of finite groups
    Revin, Danila Olegovitch
    Vdovin, Evgenii Petrovitch
    ISCHIA GROUP THEORY 2004, PROCEEDINGS, 2006, 402 : 229 - +