GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK ARE FINITE-BY-HYPERCENTRAL OR HYPERCENTRAL-BY-FINITE

被引:0
|
作者
A. DILMI
N. TRABELSI
机构
[1] University Ferhat Abbas Setif 1,Laboratory of Fundamental and Numerical Mathematics, Department of Mathematics
[2] Campus El Bez,undefined
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
finite-by-hypercentral; hypercentral-by-finite; locally (soluble-by-finite); rank; primary 20F19; secondary 20F99;
D O I
暂无
中图分类号
学科分类号
摘要
A group G is said to be of finite rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with a such property. If there is no such r, then the group G is said to be of infinite rank. In the present paper, it is proved that if G is an X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{X}$$\end{document}-group of infinite rank whose proper subgroups of infinite rank are finite-by-hypercentral (respectively, hypercentral-by-finite), then all proper subgroups of G are finite-by-hypercentral (respectively, hypercentral-by-finite), where X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{X}$$\end{document} is the class defined by N.S. Černikov as the closure of the class of periodic locally graded groups by the closure operations P´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\acute{P}}$$\end{document}, P`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\grave{P}}$$\end{document} and L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{L}$$\end{document}.
引用
收藏
页码:492 / 500
页数:8
相关论文
共 50 条
  • [1] GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK ARE FINITE-BY- HYPERCENTRAL OR HYPERCENTRAL-BY-FINITE
    Dilmi, A.
    Trabelsi, N.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (02) : 492 - 500
  • [2] On indecomposable groups and groups with hypercentral-by-finite proper subgroups
    Artemovych, OD
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (1-2): : 163 - 175
  • [3] Groups whose Proper Subgroups of Infinite Rank are Cernikov-by-Hypercentral or Hypercentral-by-Cernikov
    Zitouni, Amel
    Trabelsi, Nadir
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2021, 11 : 65 - 74
  • [4] On subgroups of hypercentral type of finite groups
    Ballester-Bolinches, A.
    Ezquerro, Luis M.
    Skiba, Alexander N.
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) : 259 - 265
  • [5] On FΦ*-hypercentral subgroups of finite groups
    Guo, Wenbin
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA, 2012, 372 : 275 - 292
  • [6] WEAKLY HYPERCENTRAL SUBGROUPS OF FINITE GROUPS
    DYKES, DC
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) : 337 - &
  • [7] HYPERCENTRAL SUBGROUPS OF FINITE-GROUPS
    PENG, TA
    JOURNAL OF ALGEBRA, 1982, 78 (02) : 431 - 436
  • [8] On subgroups of hypercentral type of finite groups
    A. Ballester-Bolinches
    Luis M. Ezquerro
    Alexander N. Skiba
    Israel Journal of Mathematics, 2014, 199 : 259 - 265
  • [9] Variants of theorems of Baer and Hall on finite-by-hypercentral groups
    Casolo, Carlo
    Dardano, Ulderico
    Rinauro, Silvana
    JOURNAL OF ALGEBRA, 2016, 452 : 279 - 287
  • [10] On the φ-hypercentral subgroups of finite groups1
    Bao, Hongwei
    Miao, Long
    Shi, Huaguo
    Zhang, Jia
    QUAESTIONES MATHEMATICAE, 2020, 43 (01) : 35 - 44