GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK ARE FINITE-BY-HYPERCENTRAL OR HYPERCENTRAL-BY-FINITE

被引:0
|
作者
A. DILMI
N. TRABELSI
机构
[1] University Ferhat Abbas Setif 1,Laboratory of Fundamental and Numerical Mathematics, Department of Mathematics
[2] Campus El Bez,undefined
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
finite-by-hypercentral; hypercentral-by-finite; locally (soluble-by-finite); rank; primary 20F19; secondary 20F99;
D O I
暂无
中图分类号
学科分类号
摘要
A group G is said to be of finite rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with a such property. If there is no such r, then the group G is said to be of infinite rank. In the present paper, it is proved that if G is an X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{X}$$\end{document}-group of infinite rank whose proper subgroups of infinite rank are finite-by-hypercentral (respectively, hypercentral-by-finite), then all proper subgroups of G are finite-by-hypercentral (respectively, hypercentral-by-finite), where X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{X}$$\end{document} is the class defined by N.S. Černikov as the closure of the class of periodic locally graded groups by the closure operations P´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\acute{P}}$$\end{document}, P`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\grave{P}}$$\end{document} and L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{L}$$\end{document}.
引用
收藏
页码:492 / 500
页数:8
相关论文
共 50 条
  • [31] ON SOME CRITERIA OF f-HYPERCENTRAL ACTIONS OF FINITE GROUPS
    Li, B.
    Chen, Q.
    Qiaolin, C.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (05) : 859 - 867
  • [32] On factorizations of finite groups with F-hypercentral intersections of the factors
    Guo, Wenbin
    Skiba, Alexander N.
    JOURNAL OF GROUP THEORY, 2011, 14 (05) : 695 - 708
  • [33] Hypercentral groups with all subgroups subnormal III
    Smith, H
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 591 - 598
  • [34] Finite groups whose all proper subgroups are C-groups
    Pengfei Guo
    Jianjun Liu
    Czechoslovak Mathematical Journal, 2018, 68 : 513 - 522
  • [35] Finite groups whose all proper subgroups are C-groups
    Guo, Pengfei
    Liu, Jianjun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (02) : 513 - 522
  • [36] FINITE GROUPS WHOSE ALL PROPER SUBGROUPS ARE GPST-GROUPS
    Guo, Pengfei
    Yang, Yue
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 600 - 606
  • [37] A note on groups whose proper subgroups are quasihamiltonian-by-finite
    Francesco de Giovanni
    Federica Saccomanno
    Ricerche di Matematica, 2017, 66 : 619 - 627
  • [38] A note on groups whose proper subgroups are quasihamiltonian-by-finite
    de Giovanni, Francesco
    Saccomanno, Federica
    RICERCHE DI MATEMATICA, 2017, 66 (02) : 619 - 627
  • [39] GROUPS WHOSE PROPER QUOTIENTS HAVE FINITE DERIVED SUBGROUPS
    ROBINSON, DJS
    ZHANG, ZR
    JOURNAL OF ALGEBRA, 1988, 118 (02) : 346 - 368
  • [40] Groups whose proper subgroups of infinite rank have minimax conjugacy classes
    Bouchelaghem, Mounia
    Trabelsi, Nadir
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (01)